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Abstract 

  Individuals show a great heterogeneity in determining to be honest or deceptive in 

daily life. A large number of studies have investigated the neural substrates of 

deception; however, the brain networks contributed to the individual difference in 

deception still remain unclear. The current study tried to address this issue by 

employing a machine-learning approach to predict individuals’ deceptive propensity 

with topological properties of whole-brain resting-state functional connectivity 

(RSFC). Participants finished the resting-state functional MRI (fMRI) data 

acquisition, and then played as proposers in a modified ultimatum game in which 

they spontaneously chose to be honest or deceptive one week later. A linear 

relevance vector regression (RVR) model was trained and validated to examine the 

relationship between topological properties of networks of RSFC and actual 

deceptive behaviors. Results showed that the machine-learning model sufficiently 

decoded individual differences of deception by using three brain networks based on 

RSFC, including the executive controlling network (DLPFC, MFC and OFC), the 

social and mentalizing network (the temporal lobe, TPJ and IPL), and the reward 

network (putamen and thalamus). These networks have been found to form a 

signaling cognitive framework of deception by coding mental states of others and the 

reward or values of deception or honesty, and integrating this information to make 

final deceptive or honest decisions. These findings suggest the potentiality in using 

RSFC as a task-independent neural trait to predict deceptive propensity, and shed 



  

light on using machine-learning approaches in deception detection. 

Keywords: deception, individual difference, neural trait, machine learning, cross 

validation, resting-state fMRI 

 

Abbreviations: DLPFC, dorsolateral prefrontal cortex; OFC, orbitofrontal cortex; 

MFC, middle frontal cortex; IPL, inferior parietal lobule; TPJ, temporo-parietal 

junction; RSFC, resting-state functional connectivity; ND, nodal degree centrality; 

NE, nodal efficiency; NB, nodal betweenness centrality; ROIs, regions of interests; 

LOOCV, leave-one-out cross-validation; RVR, relevance vector regression. 

  



  

Introduction 

People show great individual difference in deception when they have 

opportunities to lie. Some tell lies all the time while others never lie (Gibson et al., 

2013;Greene and Paxton, 2009;Tang et al., 2017). Explicit behavioral cues of 

individual difference have been widely investigated in deception detection (DePaulo 

et al., 2003;Newman et al., 2003;Riggio and Friedman, 1983). Progress in cognitive 

neuroscience techniques in the past decade leads to considerable interest in 

examining the underlying neural correlates of deception and deception detection 

(Abe, 2011;Jenkins et al., 2016;Kozel et al., 2005;Langleben, 2008;Ofen et al., 

2017;Sun et al., 2015). 

By comparing difference of neural responses between lying and telling the truth, 

most empirical studies indicate that deception recruits multiple brain networks. That 

is, the prefrontal cortex (e.g., superior frontal cortex (SFC), orbitofrontal cortex 

(OFC), and middle frontal cortex (MFC)), the anterior cingulate cortex (ACC), the 

subcortical (e.g., striatum, thalamus, etc.) and posterior cortical regions (e.g., 

premotor and motor cortex, precuneus, inferior parietal lobule (IPL)), the temporal 

lobe and temporo-parietal junction (TPJ) (Lisofsky et al., 2014;Spence et al., 2004). 

These networks are considered to interact with each other to shape deception as an 

integral system. The prefrontal cortex and ACC are engaged in the executive 

controlling and behavior inhibiting processes in deception (Christ et al., 2009); the 

subcortical regions are engaged in processing the reward or benefits of deception 

(Abe and Greene, 2014); the regions in the temporal and parietal lobe are involved in 



  

dealing with social context and mentalizing intentions and mental states of others 

(Molenberghs et al., 2016). 

Researchers also tried to predict individualized deception with these brain 

networks. Task-dependent neuroimaging studies show that activities of dorsolateral 

prefrontal cortex (DLPFC), MFC, parietal lobe and subcortical regions are correlated 

with the frequency of deception (Abe and Greene, 2014;Cui et al., 2018;Dogan et al., 

2016;Greene and Paxton, 2009). However, these studies used different paradigms 

and experimental designs, making it hard to obtain the general neural networks 

contributed to deception propensity of each individual. Moreover, several studies 

using structural brain measures found that neocortex size and white matter volumes 

in the brain could predict individual deceptive propensity (Byrne and Corp, 

2004;Yang et al., 2007), suggesting the possibility to use task-independent neural 

measures to capture individual difference in deception. 

The current study aims to decode the heterogeneity in deception from intrinsic 

whole-brain functional connectivity. We used topological properties of resting-state 

functional connectivity (RSFC) calculated by graph theory analysis to predict 

heterogeneity in deceptive behaviors across individuals (i.e., to differentiate 

individuals with high and low propensity of deception) with a machine-learning 

approach. 

RSFC is used to characterize the patterns of connections between brain regions 

in a task-independent state (Biswal et al., 1995), which has been proposed to be an 

effective neural trait measure to predict individual difference in behaviors (Gabrieli 



  

et al., 2015;Nash et al., 2015). First, RSFC, especially the whole-brain RSFC, is 

stable and reliable, which has high test-retest reliability (Cao et al., 2014;Zuo and 

Xing, 2014). Second, it could depict the uniqueness of each individual’s brain 

functional organization, severing as a “fingerprint” in identifying individuals (Finn et 

al., 2015). Furthermore, it is sufficient to predict mental states and social behaviors 

such as subjective happiness (Luo et al., 2015), impulsivity in economic 

decision-making (Li et al., 2013), trust behavior (Hahn et al., 2014), reciprocity of a 

gift (Cáceda et al., 2015), preference to social information (Zhang and Mo, 2016), 

and costly punishment for unfair behaviors (Feng et al., 2018). Therefore, we 

hypothesized that individual difference in deception would be predicted by RSFC 

patterns between brain networks. 

     To capture the topological properties of brain networks derived from RSFC, 

we employed a graph theory analysis and put these properties as features in the 

prediction of deceptive behaviors. As a framework that depicts organization 

principles of complex networks, the graph theory could provide a quantitative 

description of brain with graphs composed of nodes (i.e., regions or voxels) and 

edges (i.e., functional connectivity between nodes) in several networks (Bullmore 

and Sporns, 2009;He and Evans, 2010). Three network metrics are commonly used 

to quantify the topological properties of each network node. That is, the nodal degree 

centrality (ND) which measures the involvement of a node in the network 

(Boccaletti et al., 2006;He and Evans, 2010); the nodal efficiency (NE) that 

estimates the efficiency of parallel information processing of a node in the network 



  

(Achard and Bullmore, 2007); and the nodal betweenness centrality (NB) that 

assesses the degree of influence a node has on spreading information through the 

network (Freeman, 1978). These metrics of resting-state brain network has been 

consistently found to be associated with behaviors (Cao, et al., 2014;Feng, et al., 

2018;Liu et al., 2017). 

     With these network metrics, the current study aims to distinguish individuals 

with different propensity of deception by a machine-learning approach. The 

machine-learning approach selects metrics of nodes, then trains predictive models of 

brain-behavior relationships with training samples and assesses the performance of 

the model with independent-testing samples through cross-validation (Cui and Gong, 

2018;Cui et al., 2018;Cui et al., 2016;Shen et al., 2017). Through these procedures, 

we hope to obtain the discriminative features in the resting-state brain networks as 

the neuroimaging makers for deceptive behaviors. Specifically, we hypothesized that 

metrics of brain networks found in previous deception related studies, i.e., the 

executive controlling and behavior inhibiting network (e.g., DLPFC, MFC, OFC), 

the social context and mentalizing network (e.g., the temporal lobe, IPL, TPJ), and 

the reward network (e.g., putamen, thalamus) would be primarily contributive in the 

prediction. 

Experimental Procedures 

Participants 

Fifty-two healthy participants from Beijing Normal University (23 females; 

Mage = 23.3, SD = 2.15). Two participants misunderstood the task; three participants 



  

reported that they did not know they could lie in the task. Their data were not 

included in the analysis. All participants reported no history of neurological or 

psychiatric disorders, signed consents and were paid with money. The Institutional 

Review Board of the State Key Laboratory of Cognitive Neuroscience and Learning 

of Beijing Normal University approved this study.  

Procedure 

Firstly, all participants were required to keep still and close their eyes to finish a 

resting-state fMRI scanning session, which lasted for 6 minutes and 46 seconds. 

They were instructed to not to think about anything systematically or fall asleep 

during scanning. One week after that, they finished a behavioral test session, during 

which they played as the proposer in a modified ultimatum game (Güth et al., 

1982;Tang et al., 2016;Tang, et al., 2017). They were instructed to divide a total of 

money units (randomly chosen from 8, 10, 12, or 14 units in each trial) between 

themselves and anonymous recipients in 12 trials (Figure 1A). The range of the 

money units would not be shown to them. At the beginning of each trial, they would 

randomly gain a total amount of money units (True total) from the computer for the 

division. Then, they needed to report the amount of the total (Reported total) to the 

recipient who did not know the total amount, which provided a chance for them to 

tell a lie. Next, they made a division and then waited for the recipient to accept or 

reject it. If the recipient accepts the division, participants and the recipient would 

gain the money units according to the division; if the recipient reject it, all of them 

gained nothing. In each trial, participants’ divisions were paired with choices from 



  

52 real recipients collected previously in another study with the same experimental 

paradigm and were told that recipients would never know the true total they gained. 

We aimed to measure participants’ spontaneous tendency of deception, thus we 

controlled the rejection rate for each participant with 25% based on real recipients’ 

responses in the previous study. We run at least two participants at the same time to 

make they believe that they play with real recipients. Each participant sat in a small 

room to finish the task alone. All participants were debriefed after the whole task. 

They answered questions including whether they knew they could spontaneously 

choose to deceive the recipient in the task, whether recipients would know their true 

totals, and whether recipients’ choices would affect their payments. 

Image acquisition 

The resting-state fMRI scanning was finished at Beijing Normal University 

Imaging Center for Brain Research with a Siemens Trio 3 T MRI scanner (Lin et al., 

2015;Liu, et al., 2017). Firstly, we obtained participants’ 3D structural images with 

144 sagittal slices by a T1-weighted MP-RAGE sequence. The thickness was 1.33 

mm; the in-plane resolution was 256 × 256; the repeat time (TR) was 2530 ms; the 

echo time (TE) was 3.39 ms; the inversion time (TI) was 1100 ms; the flip angle was 

7°; and the FOV was 256 × 256 mm. Next, we sued an echo-planar imaging (EPI) 

sequence to obtain resting-state MRI data. The axial slices was 33; the thickness was 

3.5 mm; the gap was 0.7 mm; the in-plane resolution was 64×64; the voxel size was 

3.1 × 3.1 × 3.5 mm; the repeat time (TR) was 2000 ms; the echo time (TE) was 30 

ms; the flip angle was 90°; the field of view (FOV) was 200 × 200 mm, and the 



  

volumes was 200. 

Behavioral data analysis 

We calculated the mean deception degree (Deception degree = (True total - 

Reported total)/True total) as the index of participants’ deceptive tendency. Thus, the 

higher the deception degree is, the more deceptive the participant. 

Imaging data preprocessing 

SPM 12 (www.fil.ion.ucl.ac.uk/spm) and DPABI software packages 

(http://rfmri.org/dpabi) (Yan et al., 2016) were used to preprocess fMRI data. Firstly, 

we removed the first 10 volumes of the functional images to make signals stable, then 

corrected images with slice timing and realigned them with head motion correction. 

Next, we co-registered the mean functional image and segmented structure brain 

image of each participant. After that, we normalized their functional images onto the 

Montreal Neurological Institute space and resampled images with a voxel size of 3 x 3 

x 3 mm. Then the linear trend of the time courses was removed and a band-pass filter 

(0.01-0.1 Hz) was used to remove low- or high- frequency noise and artifacts (Biswal, 

et al., 1995;Zuo et al., 2010). A 4 mm FWHM Gaussian kernel was used to smooth 

images and reduce spatial noises. Finally, the 24 head motion parameters (Fox et al., 

2005), the white matter signal, and the cerebrospinal fluid signal (Friston et al., 1996) 

were regressed out. Since global signal regression might cause ambiguous negative 

connections, it was not implemented in the preprocessing (Buckner et al., 2009;Xie et 

al., 2017). 

Network construction 

http://www.fil.ion.ucl.ac.uk/spm
http://rfmri.org/dpabi


  

A graph theoretical analysis was used to obtain the brain network based on 

resting-state functional connectivity , which depicts the brain as graphs that consisting 

of nodes (brain regions or voxels) and edges (functional connectivity between nodes)   

(Bullmore and Sporns, 2009;He and Evans, 2010;Wang et al., 2015;Wang et al., 2010). 

The GRaph thEoreTical Network Analysis toolbox (GRETNA: 

http://www.nitrc.org/projects/gretna/) was used to construct and analysis brain 

networks. Firstly, we used a functional brain atlas with 264 non-overlapping regions 

of interests (ROIs) to define the whole brain network nodes (Power et al., 2011). This 

atlas was available in the GRETNA, in which each ROI’s radius is 3 mm. The BOLD 

signal for all the voxels in each ROI at each time point was averaged as the time 

course of each node for each participant. To compute the network edges, the Pearson 

correlation r between ROIs’ time courses in the atlas was calculated, resulting into a 

264   264 functional connectivity map. After transforming the correlation r into 

Fisher z value, functional brain networks indexed by functional connectivity were 

binarized to run the network analysis. Positive and negative functional connectivity 

were analyzed separately in both network construction and network analysis. 

Network analysis 

To characterize the importance of each node in the brain network, three widely 

used nodal metrics (Nodal degree centrality (ND), Nodal efficiency (NE), Nodal 

betweenness centrality (NB)) (Figure 2) were calculated based on the binary 

functional connectivity between nodes in the network (Boccaletti, et al., 2006;He and 

Evans, 2010). The ND metric refers to the number of edges (connections of a node 

http://www.nitrc.org/projects/gretna/


  

connected to other nodes) (Freeman, 1978). The NE metric is the mean of inversed 

minimum path length between a given node and all other nodes in the network 

(Achard and Bullmore, 2007). The NB metric is the percentage of all shortest paths of 

connections that pass through a node (Freeman, 1978). These nodal metrics were used 

features to predict deception degree in the machine-learning approach as follows. 

Relevance vector regression (RVR) 

Nodal features ND, NE, NB in the brain network were put into a linear relevance 

vector regression (RVR) algorithm, which was implemented by the function of 

PRoNTo toolbox (http://www.mlnl.cs.ucl.ac.uk/pronto/) (Schrouff et al., 2013). RVR 

is a sparse kernel machine-learning algorithm that has been used to predict behavioral 

measures with resting-state brain data (Gong et al., 2013). Based on a fully 

probabilistic Bayesian framework (Tipping, 2001), RVR introduces a mean-zero 

Gaussian prior over the model weights and each weight corresponds to one training 

sample. These weights are governed by a set of hyperparameters (one for each model 

weight) (Tipping, 2001), which are estimated iteratively on the training data. Since the 

posterior distributions of many of the model weights are sharply peaked around zero, 

those training samples related with non-zero weights are treated as “relevance 

vectors”. Then, the regression coefficients of all features are determined as the 

weighted sum of the feature vector of all “relevance vector” samples. For an unseen 

testing sample, the predicted behavioral score (e.g., predicted deception degree) was 

defined as the product of these regression coefficients and the feature vector of this 

sample. Compared to another widely used machine-learning algorithm, the linear 

http://www.mlnl.cs.ucl.ac.uk/pronto/


  

support vector regression (LSVR), RVR has no free parameter and has comparable 

predictive power and lower computational cost in behavioral predictions with brain 

functional connectivity (Cui and Gong, 2018). 

In the current study, we put ND, NE, NB features into the RVR both separately 

and together to find the best predictor of behavioral deception degree. We adopted the 

leave-one-out cross-validation (LOOCV) to evaluate the generalizability of the model.  

That is, N-1 (N equals the sample size of participants) participants’ data was used as 

the training data, and the left one was treated as the testing set. Each feature was 

linearly scaled to the range of 0-1 across the training dataset, and the same scaling 

parameters were applied to scale the testing set (Cui and Gong, 2018;Cui, et al., 2018). 

A prediction model was constructed using all the training samples, and was used to 

predict the scores of the testing sample. The training and testing procedures were 

repeated N times so that each subject was used once as the testing sample. The 

Pearson correlation coefficient (r) and mean absolute error (MAE) between actual and 

predicted deception degree across all subjects were computed to quantity the accuracy 

of the prediction (Cui and Gong, 2018;Cui, et al., 2018). 

Then a permutation test was used to determine whether the obtained final 

accuracy metrics (i.e., coefficient r and MAE) were significantly better than expected 

by chance. Specifically, the above prediction procedure was re-applied 1,000 times. 

For each time, we permuted the behavioral scores across the training samples without 

replacement. The P value for the prediction performance (for both the correlation r 

and MAE) was calculated by dividing the number of times the permuted value was 



  

greater than (or less than, or equal to) the true value by 1000. 

For visualization, we colored all ROIs whose model weight in the prediction was 

higher than 40% of the maximum predicted weight. This threshold predominantly 

eliminates noise components whose predicted weight was lower than 40% and could 

visualize the most predictive brain regions (Ecker et al., 2010;Mourão-Miranda et al., 

2005). 

Validation 

To validate our prediction results, a 10-fold cross-validation was applied (Cui, et 

al., 2018;Feng, et al., 2018). Similar to the LOOCV, this procedure divided all 

participants into 10 subsets, and used nine of the subsets as the training data and the 

remaining one as the testing data. It repeated 10 times to let each subset could be used 

as the testing data once. To avoid the data division affected the prediction 

performance, we repeated the 10-fold cross-validation for 50 times and used the 

average results as the final prediction performance. Finally, the significance of the 

prediction performance was assessed by a 1000 times permutation test. 

Results 

Behavioral results 

The mean deception degree was 0.15 (SD = 0.13). The distribution of deception 

degree showed that 19.1% participants (n = 9) never deceived, and 4.2% participants 

misreported their gained totals as less than 60% of the true totals, indicating great 

individual difference in deceptive propensity (Figure 1B). No gender (t 45 = 0.40, p = 

0.70) or age (r = -0.13, p = 0.40) difference was found in the deception degree. 



  

Prediction results of RVR 

Results of prediction with nodal features derived from positive functional 

connectivity were shown in Figure 3. The predicted deception degree was highly 

correlated with the actual behavioral deception degree for ND (r = 0.38, p = 0.009) 

and NE (r = 0.48, p < 0.001) features, but not for NB features (r = -0.05, p = 0.76). 

Specifically, combination of ND, NE features also led to significant correlation 

between predicted and actual deception degree (r = 0.42, p = 0.003), yet combination 

of ND, NE, and NB features did not (r = 0.29, p = 0.051). Therefore, we focused on 

reporting the results of the prediction of ND and NE respectively. The permutation 

test showed that the correlations for ND (Figure 3D) and NE (Figure 3E) were 

significantly higher than the chance level (permutation tests, pND = 0.021, pNE = 0.003). 

No significant correlations between predicted and actual deception degree was found 

for nodal features derived from negative functional connectivity (rs < 0.26, ps > 0.08). 

Predictive nodal features 

There were 33 ND features contributed to the RVR prediction (Figure 4A and 

Table 1), which were derived from the temporal lobe (i.e., bilateral inferior and 

middle temporal gyrus (MTG), fusiform), subcortical regions (i.e., left putamen and 

thalamus), frontal lobe (i.e., bilateral precentral gyrus, right OFC, bilateral superior 

and medial frontal gyrus (including DLPFC, MFC)), parietal lobe (i.e., left precuneus, 

IPL, TPJ), the occipital lobe and cerebellum. Similar to ND features, 25 NE features 

contributed to the RVR prediction (Figure 4B and Table 2), which were also 

originated from the bilateral temporal lobe and right fusiform, left putamen, bilateral 



  

thalamus, right OFC, bilateral superior and medial frontal gyrus, left precuneus, 

bilateral parietal lobe, occipital gyrus and cerebellum. 

Validation 

Results of the 10-fold cross-validation showed that the predicted deception 

degree remained significantly correlated with the actual deception degree for ND 

(mean r = 0.33, permutation test, p = 0.031, Figure 5A) and NE (mean r = 0.43, 

permutation test, p = 0.007, Figure 5B). 

Discussion 

Great individual difference has been found in deceptive behaviors, but the neural 

correlates of it remains unclear. The current study employed a machine-learning 

approach to predict deceptive propensity at individual level by intrinsic brain network 

in resting state. We found that graph-theoretical topological properties derived from 

resting-state brain network were able to predict individual deceptive tendency in an 

independent experiment. Specifically, individual difference in deception were 

primarily differentiated by nodal (regional) features across several brain networks, 

including the executive controlling network (e.g., prefrontal cortex), the social and 

mentalizing network (e.g. temporal lobe, TPJ, IPL), and the reward network (e.g., 

putamen, thalamus). These findings suggest that deception recruits interactions 

between multiple brain networks. 

Previous task-dependent deception studies consistently found these brain 

networks engaged in deception (Baumgartner et al., 2009;Bhatt et al., 2010;Greene 

and Paxton, 2009;Kozel, et al., 2005;Ofen, et al., 2017;Sun, et al., 2015). The 



  

prefrontal cortex (including the DLPFC, MFC and OFC) is usually regarded as the 

key network for general deception. It is involved in the executive control processes, 

including memorizing the truth when generating a lie, suppressing a truthful response, 

and switching behavioral responses between honesty and deception (Christ, et al., 

2009;Greene and Paxton, 2009;Spence, et al., 2004). Specifically, stimulating or 

damaging the DLPFC could increase or decrease deception (Maréchal et al., 

2017;Zhu et al., 2014), indicating its critical role in deciding to be deceptive or honest. 

As a contrast, the temporal lobe, TPJ and IPL are found to be more specific to 

interactive deception. They are recruited in socio-cognitive processes in deception, 

such as reasoning others’ intentions, beliefs and goals in social interaction (Bhatt, et 

al., 2010;Lisofsky, et al., 2014;Molenberghs, et al., 2016;Tang, et al., 2016;Tang, et al., 

2017). A recent study also find these regions were engaged in consolidating social 

information in the resting state (Meyer et al., 2018), reflecting their functions in 

representing abstract social information for behaviors. 

However, few studies paid attentions to the function of subcortical regions such 

as striatum and thalamus in deception. Some studies found negative relationship 

between dopamine D2-receptor availability in striatum and the “Lie” scale scores of 

social responsibility, which measures individuals’ tendency to overly behave in a 

socially desirable way (Cervenka et al., 2010;Egerton et al., 2010;Huang et al., 

2006;Reeves et al., 2007). They suggest the function of striatum in differentiating 

individuals with personality traits related to deception. Recently, neural response of 

anticipated reward in the dorsal striatum was found to be correlated with response of 



  

dishonest benefits in the DLPFC (Abe, 2011;Abe and Greene, 2014), providing direct 

evidence for the role of subcortical regions in processing reward seeking for deceptive 

behaviors. 

Consistent with these studies, our results provided the first evidence for the role 

of these three brain networks in deception with topological properties originated from 

intrinsic resting-state functional connectivity. These networks interact with each other 

and then might shape deception in a signaling cognitive framework (Jenkins, et al., 

2016) . Firstly, the social and mentalizing network represents the characteristics and 

mental state of both receivers and themselves, the potential actions and potential 

results related to deception in the deceivers’ mind. Then the reward network decodes 

the reward or values of different potential actions (e.g., to be honest or deceptive) and 

forms motivations for each actions. Finally, the two networks send the social and 

motivational information to the central executive system, which makes the final 

decision to be deceptive or honest then generate the final behavior (Abe, 2011;Abe 

and Greene, 2014;Lisofsky, et al., 2014;Spence, et al., 2004). Furthermore, these 

networks are also active in task-dependent deception studies, implying that neural 

networks in shaping personality traits related to deceptive propensity in 

task-independent state may be overlapped rather than being dissociated with networks 

engaged in making actual decisions to be deceptive or honest (Abe, 2011;Cervenka, et 

al., 2010;Egerton, et al., 2010;Huang, et al., 2006;Reeves, et al., 2007). 

Interestingly, we did not find any topological properties of the anterior cingulate 

cortex (ACC) in prediction of deceptive propensity. Although both prefrontal cortex 



  

and ACC are greatly active in monitoring cognitive conflict and inhibiting response in 

deception, their functions are different. The prefrontal cortex is a more general 

network for different types of deception, whereas the ACC is more specific to 

deception that requires participants to monitor cognitive conflict to pretend not to 

know the truth (Abe et al., 2005), or deception that associated with emotional 

response (Baumgartner, et al., 2009;Kozel, et al., 2005). Therefore, ACC in the 

task-independent state might not be contributive to deceptive propensity. 

In addition, results in the current study demonstrate that RSFC could be used to 

represent individual difference in social preference and behaviors, which are in line 

with studies that use RSFC to predict impulsivity (Li, et al., 2013), trust behavior 

(Hahn, et al., 2014), reciprocity (Cáceda, et al., 2015), and costly punishment (Feng, 

et al., 2018). These findings suggest the potentiality in using RSFC as a 

task-independent neural trait to predict deceptive propensity as neocortex size and 

white matter volumes in the brain (Byrne and Corp, 2004;Nash, et al., 2015;Yang, et 

al., 2007). Specifically, we employed a machine-learning approach to perform the 

prediction of brain-behavior relationship at the individual level, which is 

advantageous in generalizing results into independent new data (Cui and Gong, 

2018;Shen, et al., 2017). The usage of this approach not only support the potentiality 

of predicting social preference and behavior with brain neuroimaging data (Cui, et al., 

2018;Feng, et al., 2018), but also shed light on the application of neuroimaging 

markers in deception detection (Langleben, 2008). 

Several limitations should be considered when generalizing and extending results 



  

in this study. First, the behavioral deception degree in the current study captures the 

deceptive propensity in interactive context, future studies are needed to examine the 

neural networks underlying both interactive and non-interactive context (Lisofsky, et 

al., 2014). Second, our results only demonstrate the neural networks associated with 

actual deception. Future studies combine neural networks contributive to both actual 

deception and personality traits related to deception would provide more information 

about how to use neural trait to predict deceptive propensity (Cervenka, et al., 

2010;Egerton, et al., 2010;Huang, et al., 2006;Nash, et al., 2015;Reeves, et al., 2007). 

Thirdly, future studies that focus on the temporal and directional relationship among 

these networks would demonstrate how they interact with each other in making 

decisions about deception. Finally, future studies are encouraged to combine the 

topological properties and other properties of neural networks, and other 

neuroimaging measures, such as T1-weighted and diffusion-weighted brain data, to 

achieve a better and reliable network associated with deceptive propensity. 

Taken together, this current study indicate that brain networks based on intrinsic 

resting-state functional connectivity are sufficient to predict individual difference in 

deceptive propensity. It sheds light on using the machine-learning approach in 

deception detection and identifying neural trait associated with social preference and 

behaviors. 
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Figure Legends 

Figure 1.  A) Task procedure. All participants played as proposers (P) who could 

choose to tell the responder (R) the true total of allocation or not in the modified 

ultimatum game. B) Distribution of participants’ actual deception degree in the task. 

 

Figure 2.  The prediction schematic flow using the nodal features extracted from 

resting-state brain network with graph theoretical analysis. Panels A-D showed the 

steps of data analysis. 

 

Figure 3. Results of prediction of deception degree for each participant using 

relevance vector regression (RVR) algorithm and leave-one-out cross-validation 

(LOOCV). Panels A-C shows the correlation between actual and predicted deception 



  

degree derived from Nodal degree centrality (ND) features (A), Nodal efficiency 

(NE) features (B) and Nodal betweenness centrality (NB) features (C) respectively. 

Panels D-E presents the permutation distribution of ND (D) and NE (E) features’ 

mean absolute error (MAE). The black solid lines indicated the true MAE in the 

prediction. 

 

Figure 4. Contributive nodal features in prediction of individualized deception 

degree (visualized by BrainNet Viewer (Xia et al., 2013)). A) Primarily contributive 

Nodal degree centrality (ND) features in RVR prediction. B) Primarily contributive 

Nodal efficiency (NE) features in RVR prediction. 

 

Figure 5. Permutation distribution of prediction using 10-fold CV. A). Permutation 

distribution of ND features’ mean absolute error (MAE). B) Permutation distribution 

of NE features’ mean absolute error (MAE). The black solid lines indicated the mean 

MAE in the prediction using 10-fold CV. 
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Table 1. MNI coordinates and weights of primarily contributive nodal degree 

centrality (ND) features in RVR prediction. L, lfet, R; right. 

 

ROI 
Hemis

phere 

MNI coordinate 
Metric Weight 

X Y Z 

Temporal       

Inferior temporal gyrus 
L -50 -7 -39 ND 0.201 

R 46 -47 -17 ND 0.126 

Middle temporal gyrus 

L -68 -41 -5 ND 0.126 

L -56 -13 -10 ND 0.109 

R 65 -31 -9 ND 0.085 

  Fusiform L -31 -10 -36 ND 0.088 

Subcortical       

Putamen L -31 -11 0 ND 0.171 

Thalamus L -10 -18 7 ND 0.111 

Frontal       

Precentral gyrus 

L -38 -15 69 ND 0.159 

R 38 -17 45 ND 0.102 

L -32 -1 54 ND 0.092 

Orbitofrontal cortex 

R 8 48 -15 ND 0.131 

R 8 41 -24 ND 0.113 

R 6 67 -4 ND 0.105 

R 34 38 -12 ND 0.098 

Superior frontal gyrus 

R 13 -1 70 ND 0.122 

L -16 -5 71 ND 0.103 

R 10 -17 74 ND 0.090 

Middle frontal gyrus 
R 47 10 33 ND 0.101 

R 43 49 -2 ND 0.094 

Medial frontal gyrus L -8 48 23 ND 0.100 

Dorsolateral prefrontal cortex 
R 13 55 38 ND 0.097 

L -42 38 21 ND 0.089 

Parietal        

Precuneus 
L -7 -52 61 ND 0.112 

L -16 -77 34 ND 0.089 

Postcentral gyrus L -54 -23 43 ND 0.107 

Temporoparietal junction R 47 -50 29 ND 0.095 

Angular L -39 -75 44 ND 0.090 

Inferior parietal lobule R 33 -53 44 ND 0.084 

Paracentral lobule L -7 -33 72 ND 0.081 

Occipital       

Middle occipital gyrus R 42 -66 -8 ND 0.093 

Cerebellum       

Cerebelum 
R 35 -67 -34 ND 0.090 

L -32 -55 -25 ND 0.086 



  

Table 2. MNI coordinates and weights of primarily contributive nodal efficiency 

(NE) features in RVR prediction. L, lfet, R; right. 

 

ROI 
Hemis

phere 

MNI coordinate 
Metric Weight 

X Y Z 

Temporal       

Inferior temporal gyrus 
L -50 -7 -39 NE 0.213 

R 46 -47 -17 NE 0.135 

Middle temporal gyrus L -68 -41 -5 NE 0.108 

Fusiform R 33 -12 -34 NE 0.125 

Subcortical       

Putamen L -31 -11 0 NE 0.149 

Thalamus 
L -2 -13 12 NE 0.129 

R 12 -17 8 NE 0.103 

Frontal       

Medial orbitofrontal cortex R 6 67 -4 NE 0.142 

Superior frontal gyrus 

L -16 -5 71 NE 0.108 

R 10 -17 74 NE 0.105 

R 13 -1 70 NE 0.102 

Precentral gyrus L -38 -15 69 NE 0.102 

Medial frontal gyrus 
L -3 26 44 NE 0.094 

R 43 49 -2 NE 0.094 

Dorsolateral prefrontal cortex 
L -42 38 21 NE 0.099 

R 31 33 26 NE 0.087 

Parietal       

Superior parietal lobule 
L -16 -46 73 NE 0.131 

L -28 -58 48 NE 0.104 

Inferior parietal lobule R 33 -53 44 NE 0.107 

Temporoparietal junction R 47 -50 29 NE 0.086 

Precuneus L -16 -77 34 NE 0.088 

Occipital       

Lingual gyrus R 17 -91 -14 NE 0.111 

Middle occipital gyrus 
L -47 -76 -10 NE 0.098 

R 42 -66 -8 NE 0.086 

Cerebellum       

Cerebelum L -32 -55 -25 NE 0.106 
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Highlights 

1. The neural substrates of individualized deceptive propensity could be 

captured by resting-state functional connectivity. 

2. A relevance vector regression machine-learning approach was used to 

predict individualized deceptive propensity based on RSFC. 

3. Individualized deception was predicted by the executive controlling, the 

social and mentalizing, and the reward network. 

4. These networks have been found to form a signaling cognitive framework 

of deception in task-dependent fMRI studies. 

 


