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Abstract

Long-term stress has a profound impact on executive functions. Trait anxiety is recognized as a vulnerable factor
accounting for stress-induced adaptive or maladaptive effects. However, the neurocognitive mechanisms underlying
long-term stress and trait anxiety interactions remain elusive. Here we investigated how long-term stress and trait anxiety
interact to affect dynamic decisions during n-back task performance by altering functional brain network balance. In
comparison to controls, participants under long-term stress experienced higher psychological distress and exhibited faster
evidence accumulation but had a lower decision-threshold when performing n-back tasks in general. This corresponded
with hyper-activation in the anterior insula, less deactivation in the default-mode network, and stronger default-mode
network decoupling with the frontoparietal network. Critically, high trait anxiety under long-term stress led to slower
evidence accumulation through higher frontoparietal activity during cognitively demanding task, and increased decoupling
between the default-mode and frontoparietal networks. Our findings suggest a neurocognitive model of how long-term
stress and trait anxiety interplay to affect latent dynamic computations in executive functioning with adaptive and
maladaptive changes, and inform personalized assessments and preventions for stress vulnerability.
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Introduction

Now, more than ever, increasing exposure to psychosocial stress
has become an unavoidable part of our contemporary society as
the pace of life rapidly accelerates. Exposure to sustained stress
can have a profound impact on the brain and cognition through
activation of stress-sensitive neuromodulatory systems and the
release of stress hormones (de Kloet et al. 2005; Arnsten 2009).
The adverse effects of long-term stress on executive functions
are widely documented (Arnsten 2009; Lupien et al. 2009). Yet,
long-term stress has also been associated with no impairment

or even enhanced cognitive functions (Joéls et al. 2006). Thus,
long-term stress can lead to either beneficial forms of learning
that promote adaptation or detrimental effects that presage
maladaptation, likely depending on the level of stress resilience
or vulnerability of each individual (Franklin et al. 2012; McEwen
and Morrison 2013). Trait anxiety, a stable disposition to inter-
pret a wide range of environmental events in a negative way,
has been recognized as a vulnerable factor (Bishop and Forster
2013; Weger and Sandi 2018), which could account for the seem-
ingly paradoxical effects of stress. Neurocognitive models of
human anxiety suggest that high trait-anxious individuals tend
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to make additional effort to prevent shortfalls in performance
effectiveness (i.e., accuracy) with deficits becoming evidence in
processing efficiency (i.e., reaction times, RTs) on tasks involving
executive function and deliberate dynamic decision processing
(Calvo et al. 1994; Calvo 1996; Edwards et al. 2015). However,
how trait anxiety and long-term stress interact to affect dynamic
decisions during n-back task remains unclear. Considering both
long-term stress and trait anxiety provides a better understand-
ing of the profound effects of long-term stress on the brain and
cognition than either in isolation.

Recent advances in computational modeling of trial-by-trial
decision making enable us to identify latent dynamic computa-
tions in various cognitive domains including executive functions
(Bishop 2007; Browning et al. 2015; Xu et al., 2021). The archi-
tecture of executive function includes several main components
like working memory, selective attention, and cognitive inhibi-
tion (Diamond 2013). One of the most widely used paradigms for
measurement of executive functions in human studies is the n-
back task (Kane and Engle 2002; Conway et al. 2005). Research
in sequential-sampling theory thus posits that the n-back task,
analogous to speeded decision-making, can be modeled as an
evidence accumulation process during which effective informa-
tion (namely evidence) extracted from a stream of inherently
noisy observations are rapidly accumulated until sufficient evi-
dence reaches the threshold to make a decision and the choice
response is then executed (Ratcliff 1978). Drift diffusion model
(DDM), in particular, is used to decompose participant’s choice
responses in a given task into latent decision-making dynamics
modulated by free parameters. Of these parameters, the speed
of evidence accumulation refers to “drift rate” reflecting the
ability to extract effective information from perceived inputs
(Ratcliff and McKoon 2008). The frontalparietal network (FPN)
regions, particularly the dorsolateral prefrontal cortex (dIPFC) in
the middle frontal gyrus (MFG) and the inferior parietal sulcus
(IPS), are responsible for evidence accumulation in humans and
nonhuman primates (Mulder et al. 2014). These regions are also
the major targets of stress hormones such as glucocorticoids
and catecholamines through which neuronal excitability and
network connectivity are affected (Birnbaum et al. 2004; Wang
etal.2007; Xiong et al. 2021). As a vulnerable phenotype of stress-
related mental illness, high trait anxiety has been linked to
deficient processing efficiency anchored onto the FPN critical for
executive function (Bishop 2009). Yet, how long-term stress and
trait anxiety interact to affect the FPN in the dynamic decision
process remains open.

The engagement of FPN regions during executive function
tasks is usually accompanied by disengagement of core regions
of the default mode network (DMN), especially the posterior
cingulate cortex (PCC) and medial prefrontal cortex. These DMN
regions have been implicated into mind-wandering and allo-
cation of resources to internal thoughts (Raichle et al. 2001).
Less DMN deactivation has been observed under acute stress
and anxious individuals (Menon 2011), implying deficient real-
location of resources from internal thoughts to external tasks.
Moreover, the salience network (SN) has been implicated in
triggering a shift of neurocognitive resources to prioritize affec-
tive processing over deliberate executive functions (Luo et al.
2014). Indeed, hyper-activation in the anterior insula and dorsal
anterior cingulate cortex (dACC), core nodes of the SN, has
been seen in anxious individuals (Raichle et al. 2001). Although
reduced disengagement of the DMN and hyper-activation in the
SN are observed under acute stress (Qin et al. 2009), whether or

not sustained exposure to stress leads to a similar effect on the
DMN and SN remains unclear.

Beyond local activation, human executive functions rely on
nuanced functional coordination among large-scale brain net-
works of the FPN, SN, and DMN to support constantly main-
taining and updating of relevant information according to ever-
changing cognitive/environmental demands. In particular, func-
tional decoupling between the FPN and DMN plays a crucial role
in support of goal-directed tasks by suppressing task-irrelevant
internal thoughts (Cocchi et al. 2013; Liu et al. 2016). The SN
is believed to be responsible for regulating a balance between
FPN engagement and DMN disengagement to facilitate access
to externally oriented stimuli and inhibit internally oriented
attention during cognitively demanding task (Sridharan et al.
2008). Unbalanced functional organization of these networks,
with either hypo- or hyper-connectivity, has been seen in anx-
ious individuals or under acute stress (Bishop 2007; Hermans
et al. 2014). However, how trait anxiety modulates the effects of
long-term stress on functional balance of these networks during
higher-level cognitive task remains open.

Here we address the questions proposed above by leveraging
functional magnetic resonance imaging (fMRI) and computa-
tional modeling of trial-by-trial decision responses to investi-
gate how long-term stress and trait anxiety interact to affect
dynamic decision computations during n-back task (Fig. 1a). In
the long-term stress group, participants were recruited from
those who have been preparing for the upcoming competitive
Chinese National Postgraduate Entrance Exam (CNPEE) for at
least 6 months. Exposure to such an exam has been proven
as a natural long-term psychosocial stressor by our and other
laboratories (Duan et al. 2013, 2015). In the control group, par-
ticipants matched in age and education who were not prepar-
ing for the CNPEE and did not have exposure to other major
stressors in past 6 months were recruited. Participants under-
went fMRI scanning while performing a numerical n-back task
consisting of 0- and 2-back conditions (Fig. 1b). Trait anxiety
and psychological distress were assessed 1 day before the fMRI
experiment. A Bayesian hierarchical version of the drift diffusion
model (HDDM) was implemented to estimate latent dynamic
decision parameters during task processing. Brain activation
and network approaches were employed to identify how long-
term stress and trait anxiety alter functional brain network bal-
ance. Based on neurocognitive models of stress and anxiety, we
expected that individual differences in trait anxiety would mod-
ulate the effects of long-term stress on latent dynamic decisions
during n-back task, likely involving altered brain functional
balance among the FPN, DMN, and SN regions at activation,
deactivation, and network coupling levels.

Methods and Materials
Participants

Seventy-two healthy male senior college students participated
in this study. The sample size in this study is based on our
previous fMRI and ERP studies on acute stress (Qin et al.
2012a, 2012b) and long-term stress (Wu et al. 2014). Thirty-
eight participants (age range: 20-24 years old, mean + standard
deviation (SD) = 21.57+0.83) in the long-term stress group
were recruited 1-3 weeks before a highly competitive CNPEE.
An independent cohort of 34 male participants matched in age
and education who did not participate in the CNPEE or have any
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Figure 1. Experimental design and the effects of trait anxiety on psychological distress measurements among long-term stress and control groups. (a) An overview
of experimental design illustrates the major procedures for participants from long-term stress and control groups with trait anxiety and SCL-90 assessments on the
adaptation day (Day 1) before the fMRI n-back task (Day 2). These assessments occurred 1-3 weeks before the major exam stressor. There were 38 participants (S38)
in the long-term tress group and 34 (C34) in the control group. Two participants from each group were excluded from further analyses due to excessive head motion
during fMRI scanning, resulting in 36 and 32 participants in the stress and control groups, respectively (b) An illustration of the numerical n-back task that consists of
0- and 2-back conditions, with each digit item presented for 400 ms followed by an interstimulus interval of 1400 ms. Participants were instructed to detect whether
the current item was “1” in the 0-back condition and were asked to decide whether the current item had appeared 2 positions back in the sequence in the 2-back
condition. (c) Bar graphs depict psychological distress measured by the SCL-90 scores and trait anxiety in the long-term stress and control groups. Psychological distress
measured by SCL90 significantly differed between stress and control groups. (d) Positive correlations of psychological distress with trait anxiety in long-term stress

and control groups. ***P <0.001, *P < 0.05; n.s., not significant.

other anticipated stressor were recruited to the control group.
Informed written consent was obtained from all participants
before the experiment, and the study protocol was approved by
the Institutional Review Board for Human Subjects at Beijing
Normal University. Inclusion criteria for long-term exam stress
were as follows (Supplementary Fig. S1): 1) Participants had
been preparing for the upcoming competitive CNPEE for at least
6 months. 2) Participants had to provide the CNPEE certificate
registered more than 6 months before the experiment. 3) They
had to participate the experiment within a 1- to 3-week time
window before the CNPEE to ensure that they were experiencing
high levels of psychosocial stress. We did not included female
participants to mitigate potential confounds of their menstrual
cycles (Etkin and Wager 2007). Four participants (2 in each group)
were excluded from further analyses due to head movement >1
voxel in translation or in rotation. Informed written consent
was obtained from all participants before the experiment, and
the study protocol was approved by the Institutional Review
Board for Human Subjects at Beijing Normal University. Four

participants (2 in each group) were excluded from further analy-
ses due to head movement >1 voxel in translation or in rotation.

General Experimental Procedure and N-Back Task

Both psychological distress and trait anxiety measures were
administrated 1 day before the fMRI experiment to mitigate
potential confounding effects for their self-reports that may suf-
fer from bias during times of acute stress in the task experiment.
On the experimental day, participants were instructed to prac-
tice the task before fMRI scanning (Liston et al. 2009). We used
the 0- and 2-back conditions only to create a robust contrast
between low- and high-task demands to gain the differences in
modeling parameters, brain activation, and connectivity mea-
sures between these 2 conditions.

The entire n-back task included 10 blocks, which alternated
between 5 0-back blocks and 5 2-back blocks, interleaved by
a jittered fixation that ranged from 8 to 12 s (Fig. 1b). When
detecting a target, participants were required to press a button
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with their index finger as quickly and accurately as possible,
and to withhold their response for target-absent trials. There
were 21 targets and 17 targets for the 0- and 2-back conditions,
respectively.

Psychological Measurements of Long-Term Stress

The State-Trait Anxiety Inventory (1985), one of the most com-
monly used scales to measure trait anxiety level in healthy
populations, was collected both in the stress and control groups
(Supplementary Fig. S2). The Symptom Checklist (SCL-90) was
used to evaluate psychological distress including symptoms of
psychopathology under long-term stress (Derogatis and Unger
2010). Each item of the questionnaire is rated on a 5-point
scale of distress from 0 (none) to 4 (extreme). The SCL-90 con-
sists of the following 9 primary symptom dimensions: somati-
zation, obsessive-compulsive, interpersonal sensitivity, depres-
sion, anxiety, hostility, phobic anxiety, paranoid ideation and
psychoticism. Each of the 9 symptom dimensions comprises
6-13 items. We compute the average score for each symptom
dimension and then sum these 9 mean scores as the global
indices for each participant. Scores for each subscale of the SCL-
90 are indeed ranging from 0 to 23 for participants in both groups
(Supplementary Fig. S12). One outlier larger than 2.5 standard
deviations from the control group was excluded for SCL data.

HDDM for Estimating Latent Decision Parameters
during N-Back Task

The DDM conceptualizes decision-making as an evidence accu-
mulation process in which effective evidence is extracted from
the representations of stimuli that are inherently variable and
noisy and gradually accumulated over time until sufficient evi-
dence reaches the decision threshold and a choice is executed
(Fig. 2a). For the n-back task, such evidence accumulation pro-
cess can be considered as accumulating effective information
in mind on the exact position of each item to make a precise
decision whether the current item appeared 2 positions back in
the sequence. The DDM was then implemented to decompose
participants’ trial-by-trial RTs into latent processes which were
modulated by the following free parameters: 1) drift rate v, 2)
decision threshold a, 3) nondecision time t, 4) starting point z
(Wiecki et al. 2013).

The DDM is known as a de facto standard for the two-
alternative forced choice tasks, in which the 2 choices corre-
spond to the upper and lower decision boundaries, respectively
(Ratcliff and McKoon 2007). Recent advances have extended the
DDM to many task paradigms with 1 choice such as Go/no-Go
task, as RTs of no-Go condition cannot be measured (Zhang
et al. 2015; Ratcliff et al. 2018). Likewise, we fitted the DDM to
trial-by-trial RT's for hits (target items with successful response)
and false alarms (nontarget trials with response) in 0- and 2-
back conditions. The DDM parameters were then estimated by
the HDDM across participants for its suitability to a relatively
small number of trials, according to the most recent simulation
data by systematic comparisons of multiple drift models (Lerche
et al. 2017). Critically, the hierarchical modeling formulated in
the Bayesian framework allows us to simultaneously estimate
parameters on both group and individual levels, in a way that
individual parameters were drawn from the group distribution
(Wiecki et al. 2013). Differences in RTs between 0- and 2-back
conditions, and between stress and control groups, implicate
changes in 1 or more DDM parameters between task conditions
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Figure 2. Effects of long-term stress on latent dynamic decision-making during
n-back task. (a) Schematic view of the drift diffusion model accounting for
the n-back task with 4 model parameters: Drift rate (v) indicates the rate of
evidence accumulation until boundary threshold a is reached. The nondecision
time t represents the time for stimulus encoding in addition to decision-making
process. The starting point z reflects the prior preference toward 1 choice over
the other. (b) Left: Mean reaction times for 0- and 2-back conditions in the stress
and control groups. Right: Estimated model parameter for drift rate in the DDM.
Notes: Error bars represents SEM. Dots represent individual parameters.

and groups. To examine whether the 4 parameters varying 0-
and 2-back conditions led to greater biases between different
models, 15 variants of the DDM with different parameter con-
straints were established for both stress and control groups
(Supplementary Fig. S4). Model comparisons were conducted
by using deviance information criterion (DIC) (Supplementary
Table S22) (Wiecki et al. 2013). For each model, Markov chain
Monte Carlo (MCMC) sampling methods were applied to perform
Bayesian inference by generating 20 000 samples and discarding
the first 2000 samples as burn-in. The best model is determined
by the minimum DIC. We further employed the Gelman-Rubin
statistic to assess the convergence of the model. Note that a
difference of 10 in DIC is considered acceptable (Zhang and Rowe
2014). The value of R computed for all parameters was close
to 1.0 and< 1.01, indicating good convergence where successful
convergence is indicated by values < 1.1 (Wiecki et al. 2013). The
4 parameters of each participant from the best fitted model were
then submitted to subsequent analyses.

Behavioral Data Analysis

Two-sample t-tests were conducted to compare the differences
in trait anxiety and psychological distress between groups. Cor-
relation analyses were conducted to compute the relationships
of trait anxiety with psychological distress and latent dynamic
decision measures from HDDM. Statistical tests were conducted
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to compare group differences in Fisher r-to-z-transformed cor-
relation coefficients. Separate analyses of variance (ANOVAS)
were conducted to examine the effects of long-term stress on
conventional and latent computational measures for the 0-back
and 2-back conditions. Mixed factorial ANOVAs were conducted
using the “afex” R package (Singmann et al. 2016), and the Green-
house-Geisser correction was applied whenever a nonspheric-
ity assumption was violated. For regressions and multigroup
structural equation models (SEMs), the Pearson’s coefficient r
and estimated coefficients indirect Est are used as effect size.
According to Cohen, the effect size is low if the value of r varies
around 0.1, medium if r varies around 0.3, and large if r varies
> 0.5 (Cohen 2013). Cohen’s d and q are employed to measure
effect size respectively for 2 independent t-test and the differ-
ence between 2 correlations (Cohen 2013). Cohen suggested that
d=0.2 could be considered as a “small” effect size, 0.5 represents
a “medium” effect size and 0.8 as a “large” effect size. Cohen
proposed the following categories for the q interpretation: <0.1:
no effect; 0.1 to 0.3: small effect; 0.3 to 0.5: intermediate effect;
>0.5: large effect. Generalized eta squared (n%g) is used as a
measure of the effect size for our mixed 2-by-2 ANOVA. Usually,
n?=0.01 indicates a small effect; > =0.06 indicates a medium
effect; n? =0.14 indicates a large effect.

Imaging Data Acquisition

Participants were scanned in a Siemens 3.0-Tesla TRIO magnetic
resonance imaging (MRI) scanner (Erlangen, Germany) at
the Brain Imaging Center of the National Key Laboratory
of Cognitive Neuroscience and Learning at Beijing Normal
University. Functional images were acquired with a gradient-
recalled echo planar imaging sequence (axial slices 33, repetition
time 2000 ms, echo time 30 ms, flip angle 90°, slice thickness
4 mm, gap 0.6 mm, field of view 200 x 200 mm, and voxel size
3.1x3.1x4.6 mm?). Functional imaging session lasted 464 s
during the n-back task. To improve individual coregistration
and spatial normalization, a high-resolution anatomical image
was acquired in the sagittal orientation using a T1-weighted 3D
magnetization-prepared rapid gradient echo sequence (slices
192, repetition time 2530 ms, echo time 3.45 ms, flip angle 7°,
slice thickness 1 mm, field of view 256 x 256 mm, and voxel size
1x1x1mm?3).

Imaging Data Analysis

Preprocessing

Imaging data analysis was performed using Statistical Para-
metric Mapping 8 (SPM8 https://www.fil.ion.ucl.ac.uk/spm/so
ftware/spm8/). The first 4 functional volumes were discarded
to enable T1 equilibration. The remaining volumes were first
realigned to correct for head motion. The realigned volumes
were then corrected for slice acquisition timing. The mean func-
tional image was coregistered to each participant’s T1-weighted
structural image and then normalized to a standard stereotaxic
Montreal Neurological Institute (MNI) space with a resolution
of 2x2x2 mm3. The functional images were then spatially
smoothed by an isotropic Gaussian kernel with 6-mm full-width
at half-maximum. Smoothed images were statistically analyzed
under the general linear model (GLM) framework in SPM8.

GLM Analysis
To assess neural activity associated with 0-back and 2-back
conditions, these conditions were modeled separately as

boxcar regressors and convolved with the canonical hemody-
namic response function built in SPM8. In addition, 6 realign-
ment parameters from preprocessing were included to account
for movement-related variability. The analysis included high-
pass filtering using a cutoff of 1/128 Hz and a serial correlation
correction using a first-order autoregressive model (AR[1]).

Corresponding contrast parameter images for 0- and 2-back
conditions at the individual level were then submitted to a
second-level group analysis using 2-by-2 factorial ANOVA, with
Group (long-term stress vs. control) as between-subject factor
and white matter (WM)-load (0- vs. 2-back) as within-subject
factor to examine the main effects of Group and WM-load, and
their interaction on task-invoked brain response. We identi-
fied brain regions showing significant Group and WM-by-Group
interaction effects, and then applied a conjunction analysis
of the minimum statistic (Nichols et al. 2005) with the con-
trasts of “2- > 0-back” and “0O- > 2-back” separately. This allows
us to identify brain regions commonly showing WM-by-Group
interaction and WM-related activation/deactivation. Significant
clusters were determined by a voxel-wise height threshold of
P <0.001 and an extent threshold of P <0.05 corrected for mul-
tiple comparisons using suprathreshold cluster-size approach
based on Monte-Carlo simulations (Supplementary Table S6).
Given our priori hypotheses regarding the DMN, SN, and FPN
regions, these regions were additionally investigated using a
height threshold of P <0.005 and an extent threshold of P <0.05
corrected for multiple comparisons. Monte-Carlo simulations
were implemented using the AlphaSim procedure. Ten thou-
sand iterations of random 3D images, with the same resolution,
dimensions and 6-mm smoothing kernel as used our fMRI data
analysis, were generated. The maximum cluster size was then
computed for each iteration and the probability distribution was
estimated across the 10000 iterations. This approach allowed us
to determine the minimum cluster size that controls for false-
positive rate for regions of interest. Parameter estimates were
extracted from significant clusters to characterize task-invoked
response as a function of WM-load, trait anxiety and groups
using 3dmaskave built in AFNI.

Given the prominent effect of long-term stress on drift rate
in the 2-back condition, we then focused on neural correlates
of drift rate in long-term stress and control groups in the fol-
lowing analyses (Supplementary Figs S9 and S10). To identify
brain regions showing the interaction effects between group and
drift rate, two-sample t-test was conducted for contrast images
of the 2-back condition by treating drift rate as a continuous
covariate with no mean centering (analogous to ACNOVA). In
addition, we also examined executive functions-related brain
activity associated with drift rate but not necessarily interact-
ing with groups, which might exhibit the mediation effects
in the long-term stress different from controls. Whole-brain
regression analysis was then conducted to search for the neural
correlates of drift rate in the 2-back condition in the stress
group (Supplementary Fig. S10 and Tables S15-S16). Significant
clusters were determined by the same criteria as noted above
and corresponding parameter estimates were then extracted.
Once associations between drift rate and brain activation were
identified, we then conducted correlation analyses to examine
whether such brain activation was also associated with individ-
ual differences in trait anxiety for both 2 groups. If executive
functions-related brain activity was correlated with both drift
rate and trait anxiety, SEMs were then constructed to examine
the potential mediation effects of executive functions-related
brain activity in these regions.
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Prediction Analysis

Prediction analyses were performed by Python package
“sklearn,” using a machine learning approach with balanced
4-fold cross-validation with 4 repeats combined with linear
regression to confirm the conventional correlations (Cohen
2010). The 4-fold cross-validation procedure was used to avoid
overfitting that can occur when the leave-one-out cross-
validation procedure is used on small sample sizes. We first
estimated T (predicted, observed), the correlation between the values
predicted by the regression model and the observed/actual
values, using a balanced 4-fold cross-validation procedure. The
Y(predicted, observed) 18 @ measure of how well the independent
variable(s) predict the dependent variable. Data were divided
into 4-folds such that the distributions of dependent and
independent variables were balanced across folds. A linear
regression model was built using 3-folds, leaving out 1-fold.
The samples in the left-out fold were then predicted using this
model, and the predicted values were noted. This procedure
was repeated 4 times, and finally an T(edicted, observed) Was
computed based on the predicted and observed values. Finally,
the statistical significance of the model was assessed using
nonparametric analysis. The empirical null distribution of
T (predicted, observed) Was estimated by generating 500 surrogate
datasets under the null hypothesis that there was no association
between independent and dependent variables. Each surrogate
dataset Di of size equal to the observed dataset was generated
by permuting the labels (dependent variables) on the observed
data points. T(predicted, observed)i Was computed using the actual
labels of Di and predicted labels using the 4-fold cross-validation
procedure described previously. This procedure produces a
null distribution of Fpredicted, observed) fOr the regression model.
The statistical significance of the model was then determined
by counting the number of Tpredicted, observedyi greater than
T(predicted, observed) and then dividing that count by the number of
Di datasets (500 in our case).

SEM

Separate multigroup SEMs were conducted via MPLUS 7.4 (Hayes
etal. 2011) to test the mediating effects of executive task-related
activity (i.e., IPS and MFG) on the association between trait
anxiety and drift rate in long-term stress and control groups.
Both direct and indirect effects of 2 groups and their group
differences were estimated using 95% bias-corrected confidence
intervals (CIs) with 10 000 bootstrapped resamples (Preacher and
Hayes 2008). The 95% bias-corrected CIs without the inclusion
of 0 indicate a statistically significant indirect effect at P <0.05
(Preacher and Hayes 2008). Several fit indices evaluating the
fitness of the proposed models were provided and used the
following guidelines for judging good fit: The root mean square
error of approximation (RMSEA) is considered adequate below
0.08. The standardized root mean square residual (SRMR) refers
to the standardized difference between the observed correlation
and the predicted correlation, and considered acceptable with
values of 0.08 or less (Hu and Bentler 1999). The comparative fit
index (CFI) considers the number of parameters, or paths, in the
model and is considered good at 0.93 or above. Parallel analyses
were further conducted for state anxiety.

Network Analysis for Task-State fMRI Data

Node Definition of Brain Networks
Core nodes of the typical FPN, DMN, and SN were derived from an
automated meta-analysis of the most recent 11406 fMRI studies

in Neurosynth (http://www.neurosynth.org) (Yarkoni et al. 2011).
The nodes in these 3 networks are presented in Figure 6a. Briefly,
brain masks of the FPN, DMN, and SN were first generated using
3 separate terms of “working memory,” “default mode,” and “SN,”
respectively. The nodes of the FPN included the DLPFC and the
IPS. The nodes in the DMN included the medial prefrontal cortex
(MPFC) and the PCC, and the nodes in the SN included the dACC
and the Al. Among these ROI masks, the MPFC, PPC, and dACC,
locating at the middle line structures, form into their own joint
clusters across both the left and right hemispheres. For the
remaining masks, we combined the clusters from the left and
right hemispheres into 1 unified mask, and time series from the
left and right hemispheres were the averaged. The nodes were
visualized with the BrainNetViewer (http://www.nitrc.org/proje
cts/bnv/).

Intra and Internetwork Functional Connectivity

Task-specific (i.e., 2-back) ROI-ROI functional connectivity
analysis were performed using the functional connectivity
toolbox (CONN) toolbox (https://www.nitrc.org/projects/conn/)
(Whitfield-Gabrieli and Nieto-Castanon 2012).

Our network coupling metrics derived from the CONN
package actually assess functional connectivity between task-
invoked time series of certain given regions in each condition
separately. This measure is believed to reflect functional
coupling among brain regions or nodes of interest under certain
cognitive task. In this view, we thus feel that the 2-back condition
alone rather than the difference between 2- vs. 0-back condition
would be better to reflect FNP-DMN functional coupling, as the
0-back may not be optimal to serve as a baseline in the context
of task-dependent functional connectivity. For each participant,
6 ROIs’ averaged time series were generated as regressors
of interest. Nuisance covariates including cerebrospinal fluid
(CSF), WM, and movement parameters were regressed from the
blood oxygen level-dependent (BOLD) signal using CompCor
method implemented in CONN. Bivariate correlations were
then computed between each pair of nodes, resulting in 6 x 6
correlation matrix for each participant in the 0-back and 2-back
conditions separately (Supplementary Fig. S11).

Intra and internetwork functional connectivity metrics were
computed separately. For each participant, the intranetwork
connectivity strength in each condition was calculated by
averaging Fisher z-transformed bivariate correlation coefficients
between the weighted BOLD time series of nodes within
each network. Correspondingly, the internetwork connectivity
strength was computed by averaging Fisher z-transformed
bivariate correlation coefficients of the weighted BOLD time
series across nodes between 2 different networks. To further
investigate how trait anxiety modulates the intra and internet-
work coupling patterns, regression analysis for connectivity and
trait anxiety was performed by controlling state anxiety. We
finally used regression analysis to explore its relationship with
drift rate.

Results

Effects of Long-Term Stress and Trait Anxiety
on Psychological Distress

We first investigated how long-term stress and trait anxiety
affect psychological distress. Participants’ trait anxiety and
psychological distress scores are listed in Supplementary
Table S1. Two-sample t-test revealed higher psychological
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distress in the stress than control group (tgs = 2.08, P=0.041,
d=0.51) (Fig. 1c). Moreover, individuals with higher trait anxiety
exhibited greater psychological distress within both the stress
(rsa = 0.65, P<0.001) and control groups (r,9 = 0.41, P=0.02)
(Fig. 1d), even after regressing out state anxiety (stress: r34 = 0.48,
P = 0.004, control: rp9 = 0.47, P = 0.008) (Supplementary Fig. S3
and Table S2). Given the conventional regression or correlation
models are sensitive to outliers and reflect only correlations
with no predictive value, we then conducted machine learning-
based prediction analyses mainly for the confirmatory purposes
to confirm the robustness of results from above correlation
analyses. Indeed, further prediction analyses confirmed that
higher trait anxiety was predictive of greater distress after
controlling for state anxiety in both groups (Supplementary
Table S11).

Effects of Long-Term Stress on Cognitive Performance
and Latent Dynamic Decision Measures

Next, we investigated how long-term stress affects general exec-
utive task-related performance and latent model-based param-
eters. Separate 2-by-2 ANOVAs were conducted for accuracy
and average RTs with Group (stress vs. control) as between-
subject factor and WM load (0- vs. 2-back) as within-subject
factor. These analyses revealed a main effect of Group for RTs
(F1,66 =5.37, P=0.024, n?¢=0.06), which was mainly driven by
faster RTs in the 2-back condition in the long-term stress group
than controls (tgs, =—2.40, P=0.018, d=—0.53), though this was
less pronounced in the 0-back condition (tgs=-1.77, P=0.08,
d=—0.49]. There was no main effect of Group on accuracy, nor
Group-by-WM interactions for accuracy and RTs (all F 66 <2.57,
P> 0.11).

We then investigated the effects of long-term stress on
model-based measures by fitting the HDDM to trial-by-trial
RTs separately for 0- and 2-back conditions across participants.
The model comparisons were performed for a total of 15
plausible model variants (Supplementary Fig. S4). This yielded
a model allowing for changes in parameters including drift
rate v, decision threshold a, nondecision time t, and starting
point z between conditions to provide the best fit and good
convergence (Supplementary Table S3 and Fig. S5). Separate
2 (Group)-by-2 (WM-load) ANOVAs revealed a main effect
of Group for drift rate (F166=8.91, P=0.004, »?g=0.07) and
decision-threshold (Fq66=4.15, P=0.046, n?¢=0.05). Compared
with controls, individuals under long-term stress exhibited
faster drift rate (t129=2.38, P=0.019, d=0.63) with comparable
decision threshold (tg3 =—1.44, P=0.15, d=—0.40) in the 2-back
condition, and faster drift rate (tj29 =2.17, P=0.032, d=0.49) but
less stringent threshold (tg3 =—2.39, P=0.019, d=-0.52) in the
0-back condition. The statistics for other measures are provided
in Supplementary Table S4. Together, these results indicate that
long-term stress leads to faster drift rate and lower decision
threshold compared with controls.

Long-Term Stress Shifts the Balance between
WNM-Related Brain Activation and Deactivation

We further investigated how long-term stress affects brain
systems using whole-brain 2 (Group)-by-2 (WM-load) ANOVA.
By contrasting the 2- with 0-back condition, we replicated
robust WM-related activation and deactivation in core regions
of the FPN and DMN, respectively (whole-brain family-wise error
corrected P < 0.05) (Fig. 3a). Importantly, a contrast reflecting the

main effect of Group revealed a hyper-activation in the anterior
insula (Fig. 3b) and the middle occipital cortex (Supplementary
Fig. S9) under long-term stress than controls (Supplementary
Table S12) (voxel-wise P <0.001, cluster P<0.05 corrected).
No correlation was found between drift rate and activation
in the anterior insula (Supplementary Table S14). We also
observed a Group-by-WM interaction in regions of the SN
and DMN (Fig. 4a,b), with greater WM-related activation in the
anterior insular and dACC in the long-term stress group than
controls (voxel-wise P < 0.005, cluster P <0.05 corrected) (Fig. 4b,
Supplementary Table S13). For the DMN regions, we observed
less WM-related deactivation in the MPFC and PCC in the long-
term stress group than controls (Fig. 4a, Supplementary Table
S13) (voxel-wise P <0.005, cluster P<0.05 corrected). These
results indicate that long-term stress leads to hyper-activation
in the SN regions, but less WM-deactivation in the DMN regions.

Long-Term Stress and Trait Anxiety Alter Latent
Dynamic Decisions through Frontoparietal Activity

Since no direct associations of trait anxiety with RTs or drift
rate were observed in either group (Supplementary Table S5),
we then investigated whether trait anxiety modulates neural
correlates of drift rate in the 2-back condition during which drift
rate shows a long-term stress effect. Whole-brain independent
sample t-test was conducted for the 2-back task-invoked activity
maps between the 2 groups with drift rate as a covariate of
interest. This analysis revealed a cluster in the IPS (voxel-wise
P <0.005, cluster P <0.05 corrected), with higher task-invoked
activity in this region associated with slower drift rate in the
long-term stress group (rss =—0.48, P=0.003), but an opposite
pattern in the control group (r3o = 0.40, P=0.024) (Fig. 5a). Further
analysis for Fisher’s z-transformed correlations revealed a group
difference (z=-3.71, P<0.001, q=0.95). When restricting our
analysis to the stress group, we also observed a significant clus-
ter in the MFG (voxel-wise P <0.005, cluster P <0.05 corrected),
with higher task-invoked activity in this region associated with
slower drift rate under long-term stress (rs4 =-0.52, P=0.001),
but notin controls (r3p =0.19, P=0.31) (group difference: z=—3.02,
P=0.003, q=0.77) (Fig. 5b). Prediction analyses confirmed that
higher activity in the IPS and MFG was predictive of slower drift
rate in the long-term stress group (Supplementary Table S11).
No reliable correlation was observed for decision threshold with
task-invoked brain activity during the 2-back condition.

We then observed positive correlations of trait anxiety with
drift rate-related frontoparietal activity found above in the long-
term stress group (IPS: 34 =0.48, P =0.003; MFG: r34 =0.39,P =0.02)
but not controls (IPS: r3p =0.11, P=0.54; MFG: r3p = —0.14, P=0.44)
(Fig. 5a,b). Further tests revealed a group difference in correla-
tions for the MFG (z=2.16, P=0.03, q=0.41) but not IPS (z=1.62,
P=0.11, @=0.55). Prediction analyses confirmed that higher trait
anxiety was predictive of higher activity in the IPS and MFG
(Supplementary Table S11).

Given higher activity in the IPS and MFG were associated
with higher trait anxiety and slower drift rate in the long-
term stress group, 1 may conjuncture that task-invoked
activity in these regions during the 2-back condition could
act as a mediator to account for an indirect association
between trait anxiety and drift rate. We thus implemented
multigroup SEMs to test potential mediation effects of neural
activity in the IPS and MFG in both 2 groups. These analyses
revealed significant mediation effects of the frontoparietal
activity (IPS: indirect Est.= —0.016, 95%CI = [-0.034,—0.006]; MFG:
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Figure 4. Long-term stress shifts the balance between WM-related brain activation and deactivation. The interaction effects between long-term stress and WM loads
in brain regions of the DMN and SN. (a) Significant clusters in regions of the DMN including PCC and medial prefrontal cortex (middle), with weaker WM-related
deactivation under long-term stress than control (voxel P < 0.005, cluster P < 0.05 corrected). Bar graphs depict corresponding parameter estimates only for visualization
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which vary from image-to-image. Error bars represent the standard error of mean. Dots represent individual data points.

indirect Est.=—0.013, 95%CI=[-0.029, —0.003]) on the indirect
association between trait anxiety and drift rate under long-term
stress (Fig. 5a, b) but not controls (Supplementary Fig. S7 and
Supplementary Table S7). Critically, further analyses revealed
significant group differences in the mediation effects for the IPS
(Est.=—0.018, 95%CI=[—0.038, —0.005]) and MFG (Est.=—0.012,

95%CI=[—-0.028, —0.001]). Parallel analyses for state anxiety,
however, exhibited no group differences in the mediation
effects for the IPS (Est.= —0.007, 95%CI =[—0.020,0.006]) and MFG
(Est.=—0.008, 95%CI=[—-0.025,0.003]) (Supplementary Table S8).
Together, these results indicate that individuals with higher
trait anxiety are prone to exhibit slower evidence accumulation
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Figure 5. The relation between trait anxiety, brain activity, and drift rate. (a) Left and right: Scatter plots depict the correlations of individual’s trait anxiety with executive
function-related parietal activity which in turn was correlated with drift rate in the long-term stress and control groups. Middle: The mediating effect of executive
function-related activity in the IPS on the relationship between trait anxiety and drift rate (voxel P < 0.005, cluster P < 0.05). (b) Left and right: Scatter plots depict the
correlations of individual’s trait anxiety with executive function-related prefrontal activity which in turn were correlated with drift rate in the long-term stress and
control groups. Middle: The mediating effect of executive function-related activity in the middle frontal gyrus on the relationship between trait anxiety and drift rate
(voxel P < 0.005, cluster P < 0.05). Color bar indicates minimum and maximal T values. Notes: *P < 0.05, **P < 0.005, ***P < 0.001.

than controls, mediated through higher frontalparietal activity
during high-task demand under long-term stress.

Long-Term Stress and Trait Anxiety Alter Large-Scale
Functional Brain Network Balance

To further investigate how long-term stress and trait anxiety
affect functional coordination of large-scale brain networks
during n-back task, we analyzed intra and internetwork coupling
and decoupling among the FPN, DMN, and SN regions for each
participant in the 2 groups. The FPN, DMN and SN nodes were
independently defined to avoid selection biases (Fig. 6a and
Supplementary Table S20). Separate 2 (Group)-by-2 (WM-load)
ANOVA for intranetwork coupling revealed a main effect of
WM-load for the FPN (F1gs = 4.17, P=0.045, n2;=0.009), but
no long-term stress effects nor Group-by-WM interactions
(Supplementary Table S21).

Parallel analyses for internetwork coupling revealed a main
effect of WM-load for FPN-DMN decoupling and SN-DMN cou-
pling (both F1 6 > 4.67, P <0.034, n%; =0.05 and 0.02 separately),
and a main effect of Group (F1,66 = 5.04, P=0.028, 5% =0.05) for

FPN-DMN decoupling, with greater decoupling under long-
term stress than controls (tgs =-2.25, P=0.028, d=-0.50)
(Fig. 6b). However, no Group-by-WM interaction was observed
(Supplementary Table S21). Control analyses using nodes
from meta-analysis of previous studies yielded similar effects
(Supplementary Fig. S8). Critically, individuals with higher trait
anxiety exhibited stronger FPN-DMN decoupling under long-
term stress (r33 =—0.36, P=0.034), but an opposite pattern in
controls (r3p = 0.32, P=0.079) in the 2-back condition after con-
trolling for state anxiety (Fig. 6¢). Prediction analyses confirmed
that higher trait anxiety was predictive of stronger FPN-DMN
decoupling under long-term stress (Supplementary Table S11).
Further analysis revealed a significant group difference
(z=-2.78, P=0.005, g=0.71), indicating a prominent interaction
between trait anxiety and long-term stress on FPN-DMN
decoupling. Interestingly, higher FPN-DMN decoupling was
associated with lower drift rate in the stress group (rss = 0.35,
P=0.036). These results indicate that long-term stress leads
to increased FPN-DMN decoupling regardless of WM load,
and higher trait anxiety is predictive of stronger FPN-DMN
decoupling in those under long-term stress but not in controls
under cognitively demanding task.
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Figure 6. Internetwork connectivity modulated by trait anxiety under long-term
stress. (a) Representative nodes of the 3 core brain networks involved in n-back
processing, including the FPN, DMN, and SN. (b) Bar graphs depict the main
effect of long-term stress on internetwork coupling between the FPN and DMN
in 0-and 2-back conditions, with greater FPN-DMN decoupling in the long-term
stress group in comparison to controls. (c) Scatter plot depicts an interaction
effect between long-term stress and trait anxiety on FPN-DMN decoupling, with
a negative correlation between decoupling strength and trait anxiety in the
long-term stress group, but an opposite pattern in the control group. Solid lines
represent the average, and shaded areas represent 95% confidence intervals.
Dots represent individual data points.

Discussion

In this study, we investigated the neurocognitive mechanisms
of how long-term stress and trait anxiety interact to affect
dynamic decision computations during n-back task. We found
that long-term stress led to higher psychological distress, faster
RTs, and drift rate, but a lower decision-threshold than controls,
with higher trait anxiety predictive of greater distress. These
effects occurred with general hyper-activation in the anterior
insula, greater WM-related activation in SN regions, and less
WM-related deactivation in DMN regions. Moreover, individuals
with higher trait anxiety were prone to slower drift rate via task-
invoked activity in FPN regions under cognitively demanding
task, in the long-term stress but not control group. Long-term
stress also led to stronger DMN decoupling with the FPN than
controls in high-task demand, with higher trait anxiety pre-
dictive of stronger FPN-DMN decoupling in those under long-
term stress. Our findings provide a neurocognitive account for
the interplay of long-term stress and trait anxiety on latent
dynamic decisions during higher level cognitive task, via altered
functional brain network balance among FPN, DMN, and SN
regions.

As expected, individuals in the long-term stress group expe-
rienced higher psychological distress than controls, indicating
the effectiveness of our natural long-term stress paradigm.
Moreover, individuals with higher trait anxiety experienced

more psychological distress in general, even after controlling
for state anxiety. These results are in line with previous findings
on sustained distress and other symptoms in chronic stress
(MacLeod and Hagan 1992), which agrees with the psychological
view of trait anxiety as a vulnerable phenotype of stress-related
psychopathology (Bishop and Forster 2013; Weger and Sandi
2018). Behaviorally, individuals under long-term stress exhibited
faster RTs but comparable accuracy than those in controls.
Higher drift rate in the 2-back condition but a less stringent
decision threshold in the 0-back condition was further observed
by computational modeling of trial-by-trial decisive responses.
In accordance with integrative models of stress, anxiety, and
cognitive performance (Derakshan and Eysenck 2009; Edwards
et al. 2015), our results show that sustained exposure to
exam stress may not impair performance effectiveness (i.e.,
comparable accuracy), and may enhance processing efficiency
(i.e., faster RTs and drift rate) under high-cognitive demanding
task. However, such enhanced efficiency differs from previously
reported cognitive deficits of chronic stress (Arnsten 2009;
Lupien et al. 2009). Two factors are critical to reconcile this
discrepancy. First, according to the Yerkes-Dodson law, the
effects of stress on behavioral performance exhibit a nonlinear
inverted-U shape curve as a function of stress severity and
task difficulty. Thus, a beneficial effect can be reached at high
levels of stress and task demands (Qin et al. 2012a). In this view,
our observed faster RTs and drift rate may reflect enhanced
processing efficiency at high-task demand in those under
exam stress. Likewise, 1 previous study reported that stressed
participants reacted faster at high-task demand (Schoofs et al.
2013).

Another factor is the interplay of long-term stress with trait
anxiety that entails an individual’s resilience and vulnerability
to maladaptation (Ebner and Singewald 2017; Weger and Sandi
2018). When taking individual’s trait anxiety into account, lower
trait-anxious individuals exhibited relatively faster drift rate in
those under long-term stress than in controls, whereas accuracy
remained at a comparable level across groups and anxiety
levels (Supplementary Fig. S6). In other words, stress-induced
faster drift rate is driven by low-trait anxious individuals,
suggesting that a beneficial form of adaptation to sustained
exam stress is likely driven by enhanced processing efficiency
in those individuals. This is consistent with previous studies
on stress vulnerability reporting that some individuals seem to
act as “resilient” agents who can develop adaptive strategies
to cope with stress (Franklin et al. 2012; Ebner and Singewald
2017; Weger and Sandi 2018). Furthermore, our observations
on high trait-anxious individuals may reflect the recruitment
of compensatory strategies to prevent shortfalls in accuracy
according to an influential model of cognitive trait anxiety and
performance (Eysenck et al. 2007).

At the brain activation level, consistent with previous study
(Phillips et al. 2008), individuals under long-term stress exhib-
ited a general hyper-activation in the anterior insula regardless
of WM load. Moreover, long-term stress led to greater WM-
related activation in core nodes of the SN including the ante-
rior insula and dACC, but less WM-related deactivation in the
DMN regions. The anterior insula and dACC are thought to
support salience processing, emotional awareness of distress,
and executive function (Menon and Uddin 2010; Menon 2011).
Based on the dual competition model of emotion-cognition
interaction (Pessoa 2009), such SN regions are responsible for
reallocating neural resources to resolve competition between
emotional processing and executive function. Thus, greater SN
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engagement under long-term stress may reflect recruitment of
additional effort to cope with stress reactivity and to regulate
stress-induced distress feelings along with related thoughts that
are irrelevant to the WM task. Stress-induced task-irrelevant
internal thoughts were indicated by accompanying less DMN
deactivation, which parallels the empirical findings of aberrant
DMN suppression in psychiatric diseases such as depression
(Whitfield-Gabrieli and Ford 2012).

With respect to long-term stress and trait anxiety interac-
tions on brain-behavior relationships, individuals with higher
trait anxiety under long-term stress exhibited an indirect asso-
ciation with slower drift rate through higher frontoparietal activ-
ity but not those in controls under high-task demand. The lack
of a mediation effect in the control group suggests that the
FPN serves as a mediator only in individuals under long-term
stress. Such mediation effects parallel the cognitive models of
anxiety and related studies showing that high trait anxiety
impairs processing efficiency but not performance effectiveness
on tasks involving executive function under stressful conditions
(Edwards et al. 2015). As discussed earlier, anxious individuals
may recruit additional resources as a compensatory strategy
to achieve comparable performance effectiveness (Calvo et al.
1994; Calvo 1996; Eysenck et al. 2007). Given the dIPFC and IPS
have been associated with drift rate in the process of evidence
accumulation in human and nonhuman primate studies with
single cell recording (Sereno et al. 2001; Roitman and Shadlen
2002; Liu and Pleskac 2011), our observed higher frontoparietal
engagement provides neuroimaging evidence to suggest that
higher trait-anxious individuals under long-term stress tend
to recruit more neural resources to maintain comparable task
performance at the cost of the speed of evidence accumula-
tion to make correct decisions when task demand increases.
Specifically, unlike the 0-back condition that participants only
respond to the stimuli that matches a prespecified number,
thus sustained attention but no working memory demand is
required. When performing the 2-back task under a normative
condition, however, 1 must constantly update and maintain
the most recent 2-items in mind and accumulate sufficient
evidence extracted from each rapidly presented stimulus to
ensure a correct decision whether the current item is a target
or not (Ratcliff and Smith 2004). Under stress, however, high
trait-anxious individuals experienced more distress likely with
a hypervigilant state as indicated by hyper-activation in the SN.
This might have impeded efficient extraction of target-relevant
information due to potential confounds by feelings of distress,
irrelevant thoughts, or other noise. Hence, more time is needed
to suppress irrelevant information and accumulate sufficient
evidence to reach a decision, thereby slowing the speed of
evidence accumulation. Indeed, recent studies reported that the
negative impact of trait anxiety extends beyond aversive feelings
and involves impediment of ongoing goal-directed behaviors.
This then results in an impaired capacity to disengage from the
previously relevant sensory information to overcome distracting
stimuli (Bishop 2007; Eysenck et al. 2007).

According to the neurobiological models of stress, the major
targets of stress-sensitive hormones include regions of the FPN
critical for drift rate during cognitively demanding task (Ras-
mussen et al. 1986). Given the link of high trait anxiety to
stress sensitivity and stress hormone release (Bishop and Forster
2013), we thus speculate that excessive stress hormones might
in part account for the higher activity in the IPS and MFG
in trait-anxious individuals under long term-stress under cog-
nitively demanding condition (i.e., 2-back). By extending such

neurobiological accounts, our findings provide new insights sug-
gesting that high trait anxiety per se does not necessarily lead
to cognitive deficits. Rather, high trait anxiety works in concert
with long-term stress to determine the (mal)adaptive effects on
human brain and cognition. Together, under long-term stress, a
slower speed of evidence accumulation in higher trait-anxious
individuals may reflect less efficient evidence accumulation in
the process of dynamic decisions during n-back when task load
increases, likely via increased FPN engagement to make correct
responses.

At the brain network level, we found greater FPN-DMN
decoupling during WM under long-term stress than controls
regardless of WM load. Stronger FPN-DMN decoupling here
may reflect recruitment of additional effort to suppress task-
irrelevant internal thoughts while performing the goal-directed
task (Hampson et al. 2010; Liu et al. 2016). This notion is also in
line with our observed faster RTs and drift rate under long-
term stress. Critically, under high-task demand, individuals
with higher trait anxiety exhibited stronger decoupling between
DMN and FPN regions in those under long-term stress but not in
controls, and such stronger decoupling was then associated with
slower drift rate. This again provides evidence to suggest that
high trait-anxious individuals might recruit additional resources
relying on FPN-DMN decoupling, along with the elevated
FPN activity mentioned above, to make correct responses
and prevent a shortfall in accuracy at the cost of processing
efficiency when task goal is difficult to achieve. Notably, the
SN, especially the anterior insula and dACC, is thought to
play a role in generating control signals to regulate switching
between the FPN engagement in goal-directed tasks and DMN
disengagement from irrelevant thoughts and mind wandering
(Sridharan et al. 2008; Menon and Uddin 2010; Chen et al.
2013). Although we did not find effects of long-term stress
and/or trait anxiety on SN coupling with other networks,
this switching mechanism is still relevant to account for our
observed hyper-activation of the SN, along with less WM-related
deactivation in the DMN and the increased DMN-FPN decoupling
under long-term stress. Such alterations in functional brain
network balance may reflect shifted attention out of internally
driven mental activity (i.e., stress-related distress feelings)
to make correct decision during a cognitively demanding
task.

It is worth noting that our observed effects of long-term
stress and trait anxiety on neural activity and network cou-
pling appear different in terms of the contrast of 2- versus O-
back condition and the 2-back condition only. Since WM-related
effects are widely studied by contrasting a high against low-
load condition, we thus feel that our observed effects in the
2-back condition might reflect executive functions with other
components like selective attention and cognitive inhibition
rather than WM alone. Indeed, executive functions contain 3
core components: working memory, inhibition and interference
control (including selective attention and cognitive inhibition),
and cognitive flexibility (Diamond 2013). When performing the
2-back task, in addition to constantly update and maintain the
most recent 2-items in mind (i.e., the WM component of execu-
tive function), one also is needed to suppress irrelevant informa-
tion and focus on target-relevant information to accumulate suf-
ficient evidence extracted from each rapidly presented stimulus
to ensure a correct decision (i.e., the selective attention and cog-
nitive inhibition components of executive function). In addition,
although trait and state anxiety are recognized as 2 distinct con-
structs in psychometric theory, they are intercorrelated and thus
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challenging to dissociate. Nevertheless, our conclusions on trait
anxiety still hold after controlling for state anxiety. Notably, the
mediation effects of executive function-related frontoparietal
activity on an indirect association between high trait anxiety
and slower drift rate are only present in those under long-term
stress. Such mediation effects are not present for those with
higher state anxiety.

The following limitations should be considered. First, we
only included male participants to mitigate potential confounds
related to menstrual cycles (Etkin and Wager 2007), which limits
the generalizability of our findings. Second, individual’s intelli-
gence may complicate our observed effects of long-term stress
and trait anxiety on WM, though null effects of long-term stress
or trait anxiety on WM accuracy may neutralize this concern.
Third, individuals exposed to long-term exam stress might expe-
rience sleep disruption, other stressors, and a cognitive training
that could complicate our findings. The involvement of a cog-
nitive training, for instance, could account for faster RTs and
drift rate under long-term stress than controls via improving
cognitive functioning. Although this possibility concurs 1 form
of aforementioned adaptive strategies participants developed to
cope with exam stress, it cannot readily explain our major find-
ings that high trait anxiety under long-term stress led to slower
evidence accumulation through higher frontoparietal activity
during high-task demand and increased decoupling between
the default-mode and FPNs. Fourth, our block design for n-back
task precludes trial-by-trial parametric modulation analyses for
computational measures. Given a relatively small number of
trials in our n-back task, we used the HDDM for its suitability
to estimate model parameters across participants (Lerche et al.
2017).In fact, our validation analyses showed a good model fit as
reported by previous studies (Cavanagh et al. 2014; O’Callaghan
et al. 2017). Future studies with novel designs are needed to
resolve these limitations.

In conclusion, our study demonstrates that long-term stress
and trait anxiety interplay to affect latent dynamic decisions
during n-back task by altering brain network balance in core
regions of the SN, FPN, and DMN. Our findings point toward a
neurocognitive model of how trait anxiety modulates latent
decision-making dynamics during higher order executive
functioning task under long-term stress, which may inform
personalized assessments and preventions for stress-related
(mal)adaptation.
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