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Cooperation is fundamental for survival and a functioning society. With substantial individual variability in cooperativeness, we
must learn whom to cooperate with, and often make these decisions on behalf of others. Understanding how people learn about the
cooperativeness of others, and the neurocomputational mechanisms supporting this learning, is therefore essential. During functional
magnetic resonance imaging scanning, participants completed a novel cooperation-partner-choice task where they learned to choose
between cooperative and uncooperative partners through trial-and-error both for themselves and vicariously for another person.
Interestingly, when choosing for themselves, participants made faster and more exploitative choices than when choosing for another
person. Activity in the ventral striatum preferentially responded to prediction errors (PEs) during self-learning, whereas activity in
the perigenual anterior cingulate cortex (ACC) signaled both personal and vicarious PEs. Multivariate pattern analyses showed distinct
coding of personal and vicarious choice-making and outcome processing in the temporoparietal junction (TPJ), dorsal ACC, and striatum.
Moreover, in right TPJ the activity pattern that differentiated self and other outcomes was associated with individual differences in
exploitation tendency. We reveal neurocomputational mechanisms supporting cooperative learning and show that this learning is
reflected in trial-by-trial univariate signals and multivariate patterns that can distinguish personal and vicarious choices.

Key words: computational modeling; cooperation-partner selection; multivariate pattern; prediction errors; vicarious learning.

Introduction
Cooperation—2 or more individuals working together or helping
each other to achieve a common goal—is critical for the success of
societies (Fehr and Fischbacher 2003). Cooperation exists between
family members and genetically unrelated individuals, as well
as between tribes, cities, and nations (Stallen and Sanfey 2013;
De Dreu et al. 2020). Choosing the right partners is essential
for the establishment and maintenance of cooperation (Noë and
Hammerstein 1994), as there is substantial individual variability
in the willingness of people to cooperate (Hula et al. 2018; Li et al.
2022). Moreover, successful partner selection has been associated
with greater access to resources, more efficient problem solving,
and a significant reduction in energy costs. However, in everyday
life, not only do we have to select good partners for ourselves, but
we also often choose cooperation partners on behalf of others,
henceforth “vicarious partner choice.” For example, a human
resource manager recruiting a new employee for the team, and
a professor hiring a research assistant for a post-doc. Despite
the importance of understanding the mechanisms that drive

personal and vicarious partner choice, the neurocomputational
basis remains poorly understood.

How do we decide whether to cooperate with someone or not?
An individual’s physical appearance (e.g. facial and body features)
provides a rapid clue to infer the cooperativeness of others (Stirrat
and Perrett 2010). However, such snapshot-like perceptual cues
are often inaccurate and make people fail to continuously update
their belief of others’ cooperativeness in light of new information
and dynamic changes (Takahashi et al. 2006). A more reliable
and accurate way to know the cooperativeness of a partner and
to select them for oneself or others is to learn from the con-
sequences of iterated interactions with the particular partner
(McAuliffe et al. 2019). For example, we would prefer a cooperative
partner who often performs to maximize mutual benefits over
self-interest, as we could predict their cooperation with a high
probability. In contrast, those who have betrayed us in previous
encounters would not be selected again, as we would have a low
expectation of cooperation. Thus, through positive (cooperative)
and negative (uncooperative) outcomes of social interactions with
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someone, we learn and update our expectation of cooperative-
ness, which guides our future decisions.

The framework of reinforcement learning (RL) theory provides
a biologically plausible theoretical account for understanding
how people update their expectations between actions and out-
comes over multiple decisions (Daw et al. 2006). In this frame-
work, the discrepancy between actual and expected outcomes
(i.e. prediction errors, PEs) drives learning and, in the context of
cooperation, could quantify how we learn about the cooperative-
ness of others. Indeed, recent studies have shown that people
learn about traits of other agents, such as generosity, trustwor-
thiness, and social dominance, in a manner consistent with the
RL theory (Fareri et al. 2015; Hackel et al. 2015; Ligneul et al.
2016). When applying the RL framework to social learning, we
can design experimental paradigms with carefully matched self
and other conditions to directly compare them and test whether
the computational and neural mechanisms overlap or are distinct
(Lockwood et al. 2020). Previous work has shown that people use
PEs to learn for others in a manner similar to how they learn for
themselves (Lindström et al. 2018; Aquino et al. 2020). However,
the extent to which different learning parameters are used can
also differ when learning for oneself and for others. For example,
individuals process self-relevant information more rapidly (Ma
and Han 2010; Harris et al. 2018; Lockwood et al. 2018), are less
willing to take risks when rewarding themselves (Beisswanger
et al. 2003), and are less tolerant to temporal delays in receiving
self-benefiting rewards (Albrecht et al. 2011). The current study
aimed to reveal whether similar or distinct behavioral and neural
processes are involved in choosing cooperative partners for the
self and for others.

In terms of neural implementation, both human and nonhu-
man primate studies suggest that activity in the anterior cingu-
late cortex (ACC) is associated with decision-making regarding
cooperation versus defection in dyadic interactions (Rilling et al.
2002; Haroush and Williams 2015). The ACC region, especially the
more ventral portions of the ACC (perigenual ACC, pgACC), has
been shown to encode PEs under both self- and other-referenced
frameworks (Silvetti et al. 2014; Hill et al. 2016) and play an
important role in representing dyadic similarity between self and
other (Feng et al. 2018; Lau et al. 2020). We thus expected that
the pgACC would play a crucial role in updating learning about
other’s cooperativeness and would be commonly involved in self
and other processing.

We also expected different neural activity patterns engaged
in the self and other conditions. The temporoparietal junction
(TPJ), dorsolateral prefrontal cortex (dlPFC), precuneus (PCUN),
and dorsomedial prefrontal cortex (dmPFC) have been linked
to decision-making on behalf of others compared with oneself
(Braams et al. 2014a, 2014b; Wu et al. 2020). We therefore predicted
stronger activity in these regions when choosing cooperation part-
ners vicariously for others. Finally, the finding that the striatum
specifically responded personal (but not vicarious) PEs (Morelli
et al. 2015; Sul et al. 2015) led us to predict stronger PE encoding in
the striatum when receiving (either positive or negative) outcomes
for the self than for others. In addition, extensive work suggests
that individual differences in empathy are associated with vari-
ability in vicarious processing and prosocial behaviors (Singer
et al. 2004; Lockwood et al. 2016). Thus, we further examined
individual differences in learning to choose cooperative partners,
especially how it is linked to trait empathy.

Here, we examined how individuals select cooperative partners
for themselves and vicariously for others and included carefully
matched self and vicarious experimental conditions. We designed

a cooperation-partner-choice task (Fig. 1) in which participants
played a modified version of a prisoner dilemma (PD) game where
they were provided with the opportunity to choose a cooperation
partner for themselves (hereafter the “self” condition, Fig. 1A) and
vicariously for another gender-matched stranger (hereafter the
“other” condition, Fig. 1B), rather than cooperate or defect as in
a traditional PD (see Fig. 1C for payoffs). Although it is under
the frame of PD, the current cooperation-partner-choice task is
essentially different from PD. Specifically, participants were not
provided with the opportunity to choose cooperation or defection,
rather participants cooperated by default, and they could only
choose whom to cooperate with. Unbeknownst to the participants,
we designed 2 types of partners. One type of partner chose to
cooperate 70% of the time, whereas the other one chose to coop-
erate 30% of the time. We would expect that participants would
select the cooperative partner over the uncooperative partner by
trial-and-error learning consistent with RL models. Critically, in
half of the trials, participants made partner-choice decisions for
themselves, and in the other half of the trials, participants made
choices for another participant (a gender-matched stranger). Such
a design allowed direct comparison between the self and other
conditions within the same participant so as to identify the behav-
ioral and neural similarities and differences between personal
and vicarious learning about others’ cooperativeness.

Materials and methods
Participants
Thirty-two right-handed healthy participants were recruited
as paid volunteers in the current study. They participated in
a cooperation-partner-choice task and made decisions in a
Siemens Trio 3-T MRI scanner (Siemens, Erlangen, Germany).
All participants had normal or corrected-to-normal vision, no
history of psychiatric or neurological disorders or medication, and
were not majoring in psychology or economics. Four participants
were excluded from the analysis due to technical failure (n = 1) or
excessive head movement (>3 mm; n = 3). Behavioral and neural
data analysis was conducted on the remaining 28 participants
(12 males, age range: 19–27 years, mean age = 22.25 years, and
SD = 2.40). All participants gave written informed consent before
the start of the experiment. The study protocol was approved
by the Institutional Review Board of Beijing Normal University,
Beijing, China.

Experimental task
We examined the behavioral and neural mechanisms underly-
ing learning to choose cooperative partners for the self and for
another agent. Each participant and a gender-matched confed-
erate came to the experiment at the same time. Participants
completed a cooperation-partner-choice task: choosing partners
for a revised version of prisoner dilemma (rPD) game. Instead
of choosing to cooperate or defect, participants cooperated by
default in the rPD, and they chose 1 of the 2 gender-matched
players to cooperate with, for themselves (learning for the self
and the participants received the earned points: the self condition,
Fig. 1A) or for the confederate (vicarious learning and the con-
federate received the earned points: the other condition, Fig. 1B).
Participants were informed that 2 players of each presented pair
would differ in cooperation propensity and that they needed
to choose based on their own judgment. Unbeknownst to the
participants, 1 player of each pair was more cooperative and
would choose to cooperate with a probability of 70% (in the case
of partner choosing to cooperate, both earned 200 points, Fig. 1C)
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Fig. 1. Timeline and payoff matrix for the cooperation-partner-choice task. A, B) Timeline of the cooperation-partner-choice task. Participants were asked
to choose 1 of 2 gender-matched partners for the self (the self condition, A) or another agent (the other condition, B). On each trial, participants were
given 3 s to decide which 1 among 2 partners to cooperate with (the choice phase). After the decision was made, the chosen partner was highlighted
for 500 ms followed by a fixation cross varying from 4 to 6 s minus RT. The chosen partner’s decision and corresponding payoff were then presented
for 2 s (the outcome phase), followed by an intertrial interval (varying from 2 to 4 s from a uniform distribution). If participants did not respond within
3 s during the choice phase, no decision was collected for that trial, and “no response” was presented during the outcome phase. A) An example trial of
the self condition where participants chose a partner and received the outcome that the chosen partner had chosen to defect. B) An example trial of
the other condition where participants chose a partner for another agent and received the outcome that the partner had chosen to cooperate. C) The
payoffs of the revised PD game. If the chosen partner cooperates, the agent (either oneself or the other agent) and the chosen partner earn 200 points
each. If the chosen partner defects, s/he earns 300 points, and the agent earns nothing. Points were converted into money at the end of the experiment.
(RT: reaction time).

and the other player would choose to defect with a probability of
70% (in the case of partner choosing to defect, the partner earned
300 points whereas the participants/the confederate earned 0).
To avoid potential effects of reciprocity, participants were told
that the confederate would perform a different task irrelevant
to their payoffs and that the money participants earned for the
confederate would be given anonymously.

Participants encountered 4 pairs of players (with different face
identities) and chose one of the players from each pair to cooper-
ate with. Two of the pairs were used in the self condition (Fig. 1A),
and 2 pairs in the other condition (Fig. 1B). There were 40 trials
for each pair, resulting in a total of 160 trials (namely 80 trials in
the self condition and 80 trials in the other condition). All pairs
were randomly presented across 4 runs (40 trials/run), with no >2
trials of the same pair in a row. In each trial, photos of a particular
pair of players were presented with the message “For Self”/“For
Other,” and participants were asked to choose 1 player as the
partner for rPD within 3 s (the choice phase). The selected player
was highlighted for 500 ms, followed by a fixation cross (varied
between 4 and 6 s from a uniform distribution minus reaction
time). Then, the payoff outcome of the trial was presented for 2 s
(the outcome phase), followed by an intertrial interval that varied
between 2 and 4 s from a uniform distribution. If participants did
not respond within 3 s, this trial was terminated with a message
“No response.” The players in each pair were randomly assigned as
cooperative or uncooperative players across participants and ran-
domly presented on the left or right side of the screen across trials.

Procedure
Participants and a gender-matched confederate arrived at the
functional magnetic resonance imaging (fMRI) center around the
same time and completed the consent form and the interpersonal
reactivity index (IRI; Davis 1983). Participants were then intro-
duced to the cooperation-partner-choice task and performed 16
practice trials (8 trials in the self condition and 8 trials in the
other condition). After being familiarized with the task, partici-
pants entered the scanner and performed the formal cooperation-
partner-choice task. Participants completed pre- and postexper-
iment ratings of the cooperative propensity of all players on
a 7-point Likert scale (1 = not cooperative at all, 7 = extremely
cooperative). Participants’ pre-experiment cooperativeness rat-
ings were similar for all partners, but they rated cooperative part-
ners as more cooperative than uncooperative partners after learn-
ing (Supplementary Fig. S1, see online supplementary material
for a color version of this figure). Participants were paid for their
participation (i.e. 20 United States dollar (USD) show-up fee) plus
a bonus earned across 10 randomly selected trials in the self con-
dition (100 points = 1 Chinese Yuan (CNY) ≈ 0.15 USD; i.e. ∼2 USD).

Behavioral analysis
Behavioral data analysis
To test behavioral similarities and differences between the self
and the other conditions, we compared the following indices
between the self and other conditions: (i) the proportion of
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choosing cooperative partners, (ii) learning criterion, i.e. the
minimal-trial-number of choosing cooperative partners for 5
consecutive trials of the same pair, (iii) reaction time, and
(iv) the proportion of choosing the same (cooperative and
noncooperative) player in 2 consecutive trials of the same pair. We
used a nonparametric test (i.e. Wilcoxon signed-rank test for the
between-conditions comparison) if the distribution of the data
violated the assumption of normality; otherwise, conventional
paired sample t-tests were performed.

Computational modeling
RL models have been shown to capture the behavioral and com-
putational mechanisms of reward learning and social learning
(Daw et al. 2006; Fareri et al. 2015; Lockwood et al. 2016). In the
current study, we employed RL models to understand how people
learn to choose cooperative partners and whether the underlying
computations were similar or distinct for the self and for another
agent. Specifically, we built models based on the Rescorla–Wagner
(R–W) value update rule to fit behavioral data and assessed the
performance of these models.

First, we built a nonlearning model (M1) where we assumed
that participants did not use partners’ instant cooperation behav-
iors to guide their choices and thus set the learning rate α as 0
and inverse temperature β as a free parameter. Moreover, we fitted
participants’ choice data with 6 RL models. In these RL models, we
tested whether the same or different computations underpinned
participants’ choices in the self and other conditions. We built and
compared models that estimated shared parameters (i.e. M2, M4,
and M6) or separate parameters (M3, M5, and M7) for the self and
other conditions.

Model M2 is a basic RL model assuming same learning rate
for all experiences. Specifically, we assumed that participants
updated the expected value of an action of the chosen player i
choosing to cooperate (EVi). based on the difference (PEi) between
the expected and actual outcome Ri (coded as Ri = 1 or 0 if the
chosen player chose to cooperate or defect, respectively) of the
previous trial t − 1. Specifically, participants updated the EVi in
trial t according to the Equations (1) and (2):

EVi(t) = EVi (t − 1) + a ∗ PEi (t − 1) (1)

PEi (t − 1) = Ri (t − 1) − EVi (t − 1) (2)

where EVi represents the expected value of an action that the
chosen players choose to cooperate; the learning rate α ∈ [0, 1]
characterized the extent to which the EVi is changed by PEi ; PEi

represents the PE: The difference between the actual outcome (
Ri ) and the expected value of cooperation for the chosen player
i. A high learning rate (α) indicated that the expected value of
cooperation was volatile and largely influenced by the PE. We then
employed the softmax function to transform the expected value
into the probability of choosing a given player i in the Equation (3):

Pi(t) = exp (β ∗ EVi(t))
exp (β ∗ EVi(t)) + exp

(
β ∗ EVj(t)

) (3)

where the inverse temperature parameter β is a free parameter
capturing the amount of exploration, i.e. the degree to which
participants decides to choose a higher expected value choice
versus exploring the other option. A low inverse temperature
parameter β indicates that the participant has a similar likelihood
of choosing either player irrespective of the expected value and
that the choices are close to random. A high β suggests that the

participant’s choice is consistent and strongly driven by a higher
expected value.

Model M3 is based on Model M2 except assuming different
learning rates and inverse temperatures for the self and other
conditions. The expected value is updated according to the Equa-
tion (4) for the self and the Equation (5) for the other agent:

EVi(t) = EVi (t − 1) + αs ∗ PEi (t − 1) (4)

EVi(t) = EVi (t − 1) + αo ∗ PEi (t − 1) (5)

where αs and αo are the learning rates for the self and the other
agent, respectively. The expected values were transformed using
the Equation (6) for the self and the Equation (7) for the other
agent:

Pi(t) = exp (βs ∗ EVi(t))
exp (βs ∗ EVi(t)) + exp

(
βs ∗ EVj(t)

) (6)

Pi(t) = exp (βo ∗ EVi(t))
exp (βo ∗ EVi(t)) + exp

(
βo ∗ EVj(t)

) (7)

In Model M4, we included separate positive (cooperate) and
negative (defect) learning rates. We assumed that participants
learned about players’ cooperative and defective behavior asym-
metrically; hence, we used separate learning rates for the different
outcomes as in the Equations (8) and (9):

EVi(t) = EVi (t − 1) + α[c] ∗ PEi (t − 1)

if the chosen partner i cooperates in trial (t − 1)
(8)

EVi(t) = EVi (t − 1) + α[D] ∗ PEi (t − 1)

if the chosen partner i defects in trial (t − 1)
(9)

Model M5 is based on Model M4 except assuming different
learning rates and inverse temperatures for the self and other
conditions, as in Equations (4–7).

Model M6 is based on Model 2. We further included a noise
parameter (lapse ε [0,1]) to capture choice noisiness that is irrele-
vant to expected value differences (Equation (10)), allowing us to
examine whether it is necessary to account for choice noisiness
driven by factors independent of expected value differences (such
as inattention):

Pi(t) =
[

exp (β ∗ EVi(t))
exp (β ∗ EVi(t)) + exp

(
β ∗ EVj(t)

)
]

∗ (
1 − lapse

) + lapse
2
(10)

Model M7 is similar M6 except assuming different lapse, learn-
ing rates, and inverse temperatures for the self and other condi-
tions, as in Equations (11) and (12):

Pi(t) =
[

exp (βs ∗ EVi(t))
exp (βs ∗ EVi(t)) + exp

(
βs ∗ EVj(t)

)
]

∗ (
1 − lapses

) + lapses

2
(11)

Pi(t) =
[

exp (βo ∗ EVi(t))
exp (β ∗ EVi(t)) + exp

(
βo ∗ EVj(t)

)
]

∗ (
1 − lapseo

) + lapseo

2
(12)

Similar to previous work (Huys et al. 2011; Guitart-Masip et al.
2012; Mkrtchian et al. 2017), we employed a hierarchical Bayesian
model fitting approach to estimate parameters. An expectation–
maximization (EM) algorithm was used to find the maximum a
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posteriori (MAP) estimate of each parameter for each participant
(Huys et al. 2011). The EM algorithm started with the maximum
likelihood estimation (MLE) for individual’s parameters. In each
iteration, a gaussian distribution (with mean and variance as free
parameters) was estimated from individuals’ parameters of the
previous iteration. This gaussian distribution was then used as
the prior for a MAP process to estimate individuals’ parameters
again. The iteration ceased when all parameters barely change.
Compared with the widely used MLE method, this fitting method
leverages individuals’ parameters to estimate a group prior so
as to regularize all individuals’ parameters to the group mean
and therefore less susceptible to extreme parameter values and
guarantee a more accurate group estimate. Moreover, this fitting
procedure has been thoroughly verified on the simulated data
generated from the known decision process (Huys et al. 2011).
To constrain parameters within meaningful ranges, exponential
transforms were applied to the inverse temperature (≥0), and the
sigmoid transform was applied to the learning rate and lapse
(varied between 0 and 1). These transformations indicate that the
parameters are not normally distributed. Model fit was compared
by the integrated Bayesian information criterion (iBIC). The iBIC
was the integral of the likelihood function over the individual
parameters. A lower iBIC indicates a better fit of the observed data.

To qualify the ability of the winning model to explain
participants’ behaviors, we ran a simulation analysis using the
fitting parameters from the winning model. Specifically, for each
subject, the set of fitting parameters was seen as a virtual subject
and used to simulate choices of both the self and other conditions
100 times. The learning criterion and the stay probability of both
conditions were computed for simulation and then were averaged
across simulations to obtain a dataset of simulated behaviors.
This simulated learning criterion and stay probability were then
submitted to paired t-tests and were correlated with participants’
actual behaviors to test whether the winning model successfully
reproduced our model-free effects.

fMRI analysis
fMRI data acquisition and preprocessing
Whole-brain imaging data were acquired on a Siemens Trio 3-
T MRI scanner with a 12-channel head coil at Beijing Normal
University Brain Imaging Center, Beijing, China. Functional
images were obtained using a T2*-sensitive gradient-echo-planar
imaging (EPI) sequence (33 slices; slice thickness = 3.5 mm, gap
between slices = 0.7 mm, time repetition, TR = 2,000 ms; time
echo, TE = 30 ms; field of view (FOV) = 224 mm; flip angle = 90

◦
;

and voxel size = 3.5 × 3.5 × 3.5-mm3 spatial resolution). Structural
images were collected using T1-weighted magnetization prepared
rapid acquisition with gradient-echo (MPRAGE) sequence (144
slices; slice thickness = 1.33 mm; gap between slices = 0.66 mm;
TR/TE = 2,530 ms; TE = 3.39 ms, FOV = 224 mm; flip angle = 7

◦
;

and voxel size = 1.3 × 1.3 × 1.3 mm3 spatial resolution). Neu-
roimaging data were analyzed using SPM8 (http://www.fil.ion.
ucl.ac.uk/spm/software/spm8/). The first 4 volumes from each
run were discarded to account for T1 equilibrium effects. Images
were corrected for slice acquisition timing within each volume
and realigned to correct head motions. Next, the realigned images
were coregistered to the individual gray matter image segmented
from the corresponding T1-weighted image and then normalized
to Montreal Neurological Institute (MNI) space (resampled to
3 × 3 × 3 mm3). Finally, a Gaussian kernel of 6-mm full-
width at half-maximum was applied to spatially smooth the
images.

Univariate activation analysis
After preprocessing, we created a generalized linear model (GLM)
of blood oxygen level-dependent responses to examine brain
regions in which neural activity was associated with latent vari-
ables (i.e. trial-wise expected value, PE) derived from the compu-
tational model (i.e. the winning model M3). In this GLM, missed
trials, where participants did not make a choice, were included
as a regressor of no interest. All regressors were convolved with
a canonical hemodynamic response function. Six head motion
parameters were also modeled to capture potential movement-
related artifacts. A high pass filter with a cutoff of 128 s was
employed.

The GLM integrated parameter estimates (i.e. trial-wise
expected value, PE) derived from the computational model (i.e.
the winning model M3). For each participant, we estimated a GLM
with the following regressors of interest: (R1) a stick function
at the onset of the choice phase in the self condition; (R2) R1
modulated by the expected value of cooperation in the self
condition; (R3) a stick function at the onset of the outcome phase
in the self condition; and (R4) R3 modulated by PEs in the self
condition. Regressors 5–8 were similar to R1—R4, except that
they were created for the other condition. Group mean estimated
parameters in each condition were used to regularize the
individual estimates and avoid noisy fitting by following previous
studies (Seymour et al. 2012; Eldar et al. 2016). First-level contrast
images were separately entered into a second-level random
analysis to identify brain areas encoding the expected value (R2
and R6) and tracking PEs (R4 and R8) for self and for others,
respectively. To determine the common neural representation
of PEs, we performed a conjunction analysis (self condition ∩
other condition) within the flexible factorial framework (Nichols
et al. 2005). To examine the distinct representations of expected
value (PEs) between the self and other conditions, we conducted
contrasts between R2 and R6 (between R4 vs. R8 for PE).

Statistical inference in both GLMs was performed at a standard
threshold of P < 0.05, family-wise error (FWE) cluster-level cor-
rected at the whole-brain level with a cluster-forming threshold
of voxel-wise P < 0.001. We also performed P < 0.05 FWE small
volume corrected (SVC) with an initial voxel-wise threshold of
P < 0.001 for regions where we had a strong a prior hypothesis of
encoding PEs (i.e. pgACC and striatum, Supplementary Fig. S2, see
online supplementary material for a color version of this figure).
We defined the pgACC based on a previous study examining how
people learn about social information (Lau et al. 2020). The stria-
tum was defined from term-based meta-analysis of “prediction
error” in Neurosynth (Yarkoni et al. 2011).

Multi-voxel pattern analysis
Next, multi-voxel pattern analysis (MVPA) was employed to
uncover finer-grained and spatially distributed neural activity
underlying personal and vicarious learning to choose cooperative
partners. Specifically, we examined the pattern of neural activity
that could distinguish self-regarding from other-regarding choices
(MVPA at the onset of the choice-making phase, MVPA 1) and
outcomes (MVPA at the onset of outcome-presenting phase,
MVPA 2). MVPA was implemented using slice-timing corrected
and spatially realigned (but non-normalized and unsmoothed)
images in the Decoding Toolbox (Hebart et al. 2015).

To assess activity patterns that discriminated self- and other-
regarding choices (outcomes), we first estimated a GLM for each
participant: The choice (outcome) on each trial of the self and
other conditions was modeled as a single regressor at the onset of
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choice-making (outcome-presentation) phase for MVPA 1 (MVPA
2). The GLM also included 2 regressors for outcomes (choices) in
self and other conditions separately, 6 head-motion parameters
and a regressor of missed trial as effects of no interest. Consistent
with previous studies (Zhu et al. 2019), the estimated beta images
of all choices were entered into a support vector machine (SVM)
classifier with the leave-one-run-out cross-validation method. We
used the default SVM classifier in the Decoding Toolbox, i.e. a
SVM with linear kernel and a L2 regularization with the penalty
parameter C = 1. A whole-brain searchlight decoding analysis was
then performed using a sphere with a radius of 4 voxels. Beta
values of each voxel were normalized across all pattern vectors by
removing the mean and dividing the standard deviation. Then the
beta values of N voxels in a given sphere were used to construct
an N-dimensional pattern vector. The pattern vectors from 3 of
4 runs were used to train the SVM to discriminate between self-
and other-regarding choices (outcomes for the second MVPA) and
applied to the test run to obtain the classification accuracy of
the test run. This process was iterated for the other 3 runs to
calculate the mean cross-validated classification accuracy for
each voxel, yielding a 3D map of classification accuracy. The
individual accuracy maps were then spatially normalized and
smoothed using the same parameters as those in the univariate
activation analysis. At the group-level, these maps were then
entered into a 1-sample t-test against chance level (50%). Multiple
comparisons across the whole-brain were performed the same as
the univariate activation analysis did, except the initial cluster-
forming threshold of P < 0.0001 in MVPA 1.

Finally, we investigated the relationship between the neural
activity pattern and behavioral differences in personal and
vicarious learning about cooperation. The results of behavioral
modeling showed a significant difference in the inverse tem-
perature between the self and other conditions. We, therefore,
extracted classification accuracy from a 6-mm sphere centered
at the reported peak coordinates and calculated the correlations
between the differences in the inverse temperature and the
averaged classification accuracy of survived clusters. In addition,
to examine whether the individual level of empathy modulates
the other-self difference of both behaviors and neural responses,
we calculated the correlation between the empathic concern
subscale and the difference in other- and self-regarding learning
behavior and neural underpinnings. We also regressed the
behavioral and neural differences between self and other
conditions on each of the IRI questionnaire subscales.

Results
In the cooperation-partner-choice task (Fig. 1), each participant
encountered 4 pairs of gender-matched players in a revised PD
game (2 pairs for the self condition, Figs. 1A; and 2 pairs for the
other condition, Fig. 1B). In this revised PD, participants cooper-
ated by default and could choose 1 player from each pair as the
PD partner. If the partner also chooses to cooperate, both the
partner and the participant (or the other agent) earn 200 points;
if the partner chooses to defect, then the partner earns 300 points
and the participant (or the other agent) earns 0 (Fig. 1C). In an
event-related design, the 4 pairs were randomly presented (40
trials for each pair). In each trial, participants were presented
with 2 players: 1 player chose to cooperate with a probabil-
ity of 70% (cooperative partner), and the other player chose to
cooperate with a probability of 30% (uncooperative partner). We
expected that, through trial-and-error, participants would learn
which player was the cooperative player for each pair of players.

Participants can accurately learn for self and
other but are faster to choose cooperative
partners for self
All results use parametric tests when data are normally dis-
tributed and nonparametric tests when data violate assumptions
of normality (i.e. the Wilcoxon Signed-Rank test; Lindström
et al. 2018). We first examined the probability of choosing
the cooperative over the uncooperative partner and revealed
that participants were able to learn cooperativeness of the
players significantly above chance for both the self and other
conditions (self: M ± SE = 71.55% ± 3.04%, vs. 50%, t(27) = 7.095,
P < 0.001, 95% confidence interval (CI): [15.32%, 27.79%]; and
other: M ± SE = 68.22% ± 3.00%, vs. 50%, t(27) = 6.079, P < 0.001,
95% CI: [12.07%, 24.37%]; Fig. 2A), and to a similar extent when
learning for the self and for the other agent (t(27) = 0.981, P = 0.335,
95% CI: [−3.63%, 10.29%]).

The results of the Bayesian analysis lent further support
for the null hypothesis of a similar accuracy for choosing the
cooperative partner when learning for the self and other (Bayes
factor [H1:H2] = 4.324). However, we also revealed differences in
the learning processes for the self and other conditions. We found
that participants were faster to learn for the self. Specifically,
we set a learning criterion of choosing the cooperative player
over the uncooperative player in at least 5 consecutive trials.
When comparing self and other on this criterion, participants
required fewer trials to reach the criterion successfully for
themselves (minimal-trial-number to reach learned criterion,
self: 14.93 ± 1.62; other: 18.45 ± 1.82; t(27) = −2.196, P = 0.037, 95%
CI: [−6.805, −0.230]; Fig. 2B). Moreover, we found that participants
were more likely to stay with their choice of the last trial
(t—1) in the current trial (t) when choosing for themselves
(self: M ± SE = 74.64% ± 2.47%; and other: M ± SE = 67.40% ± 2.27%;
t(27) = 2.944, P = 0.007, 95% CI: [2.19%, 12.28%]; Fig. 2C). This
was especially true when the chosen player cooperated in
the previous trial (self: M ± SE = 82.39% ± 2.72%; and other:
M ± SE = 74.33% ± 2.84%; t(27) = 3.089, P = 0.005, 95% CI: [2.71%,
13.40%]; Supplementary Fig. S3A, see online supplementary
material for a color version of this figure) but not when the chosen
player defected in the previous trial (self: M ± SE = 62.03% ± 2.90%;
and other: M ± SE = 56.51% ± 2.08%; t(27) = 1.84, P = 0.077, 95% CI:
[−0.65%, 11.69%]; Supplementary Fig. S3B, see online supplemen-
tary material for a color version of this figure).

Interestingly, reaction time analyses showed that participants
made decisions faster when choosing partners for the self than
for another agent (self: 1.212 ± 0.038 s; and other: 1.259 ± 0.042 s;
t(27) = 2.817, P = 0.009, 95% CI: [−0.083 s, −0.013 s]; Fig. 2D). More-
over, the differential reaction times when choosing for another
agent and the self was associated with individuals’ empathic
concern, one of the IRI (Davis 1983) subscales. Individuals scoring
higher on the empathic concern made decisions more slowly and
deliberately when choosing for other people than for the self
(Pearson’s r = 0.433, P = 0.021, Fig. 2E). Multiple regression, includ-
ing all IRI subscales, confirmed that the association between
the self-other differential reaction time and empathy score was
specific to the empathic concern subscale (β = 0.011, SEM = 0.004,
t = 2.564, P = 0.017).

Next, we built models to fit participants’ choice data and to
reveal the computations underlying choosing cooperative part-
ners, as well as to assess whether participants employed similar or
distinct computations when choosing for self and other. We tested
7 models based on the Rescorla–Wagner (R–W) value update rule
(Table 1): A baseline no-learning model (M1), basic R–W models
(M2 and M3), R–W models with separate positive (cooperate) and
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Fig. 2. Behavioral results. A) The group-level proportion of choosing cooperative partners changed over time in the self (blue) and the other (green)
conditions. Dashed line shows the chance level of 50%. Lines and shaded areas show the mean ± SEM of choice proportion. B) The minimum number of
trials that was required to reach the learning criterion was smaller in the self condition than in the other condition. C) A higher proportion of staying
with the chosen partner in the previous trial, when choosing for self than for the other agent. D) Participant decided faster when choosing for the self
than for the other agent. E) The positive association between trait empathic concern and the difference in reaction time when choosing for another
agent and the self. (data are shown as the mean ± SEM with overlaid dot plots. * P < 0.05; ** P < 0.01).

negative (defect) learning rates (M4 and M5), and R–W models
with choice noise being irrelevant to value difference (M6 and M7).
Of particular interest, we compared the R–W models with single
parameters shared by the self and other conditions (i.e. M1, M2,
M4, and M6) and those with separate parameters split between
the self and other trials (i.e. M3, M5, and M7).

Model comparison revealed that participants’ choices of coop-
erative players were most parsimoniously explained by the basic
R–W model with separate learning rates and inverse temperatures
for the self and other conditions (i.e. M3; see Table 1 for the iBIC
for all models tested). Here, the learning rate captures the extent
to which participants update their choices based on recent feed-
back and the inverse temperature captures the extent to which
participants made their choices based on the value difference
between the 2 players. Model comparison results suggested that
the same computational algorithm (i.e. the basic R–W learning
strategy without featuring valance-sensitive learning rates) was
employed to choose cooperative partners for the self, as well as for
another agent. Moreover, individuals utilized different weighting
of model parameters to support their choices when choosing for
themselves and for another agent.

For sanity check, we used the set of individual fitting
parameters derived from the winning model to simulate data
mimicking participants’ behaviors (detailed in Methods). The
simulated data reproduced the same behavioral patterns of the
learning criterion and the stay probability as participants showed:
(i) smaller minimal-trial-number to reach learned criterion in the

self than other conditions (self: 15.89 ± 0.60, other: 17.43 ± 0.70,
t(27) = −2.26, P = 0.032, CI: [−2.95,-0.14], Fig. 3A) and (ii) larger stay
probability for the self than other conditions (self: 68.67% ± 1.49%,
other: 64.42% ± 1.57%, t(27) = 2.84, P = 0.009, CI: [1.18%, 7.33%],
Fig. 3B). Moreover, the model simulated behaviors were highly
consistent with participants’ actual behaviors (minimal-trial-
number, self: r = 0.66, P < 0.001, other r = 0.75, P < 0.001; Fig. 3C;
stay probability, self: r = 0.76, P < 0.001, other: r = 0.73, P < 0.001;
Fig. 3D). These results confirmed the capability of our wining
model to explain participants’ behaviors.

Next, we compared these parameters between self and other.
We found that learning rates for the self and other conditions
were not significantly different (self: M ± SE = 0.275 ± 0.04; other:
M ± SE = 0.274 ± 0.04; V = 212, P = 0.849; Bayes factor [H1:H2] = 6.852;
Fig. 3E). However, participants showed a significantly higher
inverse temperature when choosing partners for the self than for
another agent (self: M ± SE = 3.91 ± 0.32; other: M ± SE = 3.30 ± 0.28;
V = 295, P = 0.036; Fig. 3F), suggesting that more exploitative
decisions were made when choosing for the self. This was
consistent with the model-free result of higher staying probability
in the self condition.

Taken together, individuals updated their beliefs of other’s
cooperativeness using immediate evidence to a similar extent
when choosing for oneself and another agent. However, individ-
uals made decisions faster, relied more on the partners’ coopera-
tive tendency, and preferred to choose the previously cooperated
partners when choosing partners for oneself (vs. others).
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Table 1. Model summary.

Model no. NP Parameter iBIC

M1 1 Inverse temperature 6,141.4

M2 2 Learning rate Inverse temperature — 4,694.1

M3 4 LR (Self) LR (Other) IT (Self) IT (Other) — 4,667.5
M4 3 LR[C] LR[D] Inverse Temperature — 4,691.7
M5 6 LR[C]

(Self)
LR[C]

(Other)
LR[D]

(Self)
LR[D]

(Other)
IT (Self) IT (Other) — 4,669.7

M6 3 Learning Rate Inverse Temperature Lapse 4,705.3

M7 6 LR (Self) LR (Other) IT (Self) IT (Other) Lapse
(Self)

Lapse
(Other)

4,668.8

Note. Model no.: model number; NP: number of parameters; LR: learning rate; IT: inverse temperature; [C]: parameter for cooperate; [D]: parameter for defect;
iBIC: integrated Bayesian information criterion.

fMRI results
Common and distinct PEs encoding for oneself and another
agent
We first examined neural activity that encoded PEs during learn-
ing of cooperative partners, by correlating neural responses dur-
ing the outcome phase with the trial-wise PE derived from the
winning model. Previous studies have revealed that the pgACC is
implicated in cooperative behaviors (Rilling et al. 2002; Haroush
and Williams 2015) and encoding PEs (Silvetti et al. 2014; Hill
et al. 2016). In addition, the striatum was reported in social RL
(Chang and Sanfey 2009; Fareri et al. 2015) and reward-based
learning (Lefebvre et al. 2017). We thus identified the pgACC and
striatum as regions of interest (ROIs) and examined whether and
how neural responses in the pgACC and striatum encoded self-
regarding and other-regarding Pes via ROI analysis. The pgACC
and striatum ROIs were adopted based on the results of previ-
ous studies examining learning about social coalition (Lau et al.
2020) and term-based meta-analysis of “prediction error” in Neu-
rosynth (Yarkoni et al. 2011), respectively. Parameter estimates
(β values) respectively associated with Pes in the self and other
conditions were extracted and averaged over all voxels within
each ROI.

We found that the activity in the pgACC activity co-varied with
Pes in both the self and other conditions (self: M ± SE = 0.60 ± 0.15,
P < 0.001, t = 3.99, 95% CI: [0.29, 0.90]; other: M ± SE = 0.57 ± 0.16,
P = 0.001, t = 3.55, 95% CI: [0.24, 0.90]) and to a similar extent
(P = 0.89, t = 0.14, 95% CI: [−0.35, 0.40]; Bayes factor [H1:H2] = 6.791,
Fig. 4A). However, the bilateral striatum signaled Pes only in the
self condition (left striatum: M ± SE = 0.68 ± 0.16, P < 0.001, t = 4.18,
95% CI: [0.35, 1.02]; right striatum: M ± SE = 0.73 ± 0.17, P < 0.001,
t = 4.35, 95% CI: [0.39, 1.07], Fig. 4B and Supplementary Fig. S4A,
see online supplementary material for a color version of
this figure) but not in the other condition (left striatum:
M ± SE = 0.33 ± 0.20, P = 0.11, t = 1.65, 95% CI: [0.35, 1.02]; self
vs. other: P = 0.072, t = 1.87, 95% CI: [−0.03, 0.73] right striatum:
M ± SE = 0.27 ± 0.19, P = 0.15, t = 1.47, 95% CI: [0.03, 0.67]; self
vs. other: P = 0.014, t = 2.64, 95% CI: [0.16, 0.75], Fig. 4B and
Supplementary Fig. S4A, see online supplementary material for
a color version of this figure). Interestingly, we found that the
striatum activity that differently encoded the other and self Pes
varied as a function of individual trait in the empathic concern
subscale. Individuals scoring lower in empathic concern showed
larger differences in striatum activity encoding other (vs. self)
Pes (left striatum: Pearson’s r = 0.41, P = 0.030; right striatum:
Pearson’s r = 0.52, P = 0.005, Fig. 4C and Supplementary Fig. S4B,
see online supplementary material for a color version of this

figure). The multiple regression, including all IRI subscales, also
supported that this association was specific to the empathic
concern subscale (left striatum: β = 0.103, SEM = 0.048, t = 2.157,
P = 0.042; right striatum: β = 0.115, SEM = 0.042, t = 2.763, P = 0.011).

In addition, we conducted a whole-brain analysis and
confirmed that the trial-by-trial Pes were encoded by activity
in the pgACC, bilateral striatum, and precentral gyrus for the self
condition (Fig. 4D) but only in the pgACC for the other condition
(P < 0.05 FWE whole-brain corrected at the cluster-level after
voxel-wise thresholding at P < 0.001; Fig. 4D, Supplementary Table
S1). We next examined the shared and distinct encoding of PEs
in the self and other conditions. A conjunction analysis (Nichols
et al. 2005) confirmed the overlap in PE encoding in the pgACC
for both the self and other conditions (FWE-SVC after voxel-wise
thresholding at P < 0.001; Fig. 4E). The direct comparison of neural
activity related to PE computations for self versus for others
revealed stronger activity in the bilateral striatum encoding
PE when learning for the self than the other agent (FWE-SVC
after voxel-wise thresholding at P < 0.001; Fig. 4F). These findings
suggested that when learning about other’s cooperativeness,
pgACC signaled personal and vicarious PEs, whereas the striatum
specialized in coding PEs in regard to the self.

Neural patterns discriminating self versus vicarious
choices and outcomes
We next employed multivariate pattern analyses (MVPA) to probe
how personal and vicarious learning of cooperativeness was dis-
tinctly represented in spatially distributed neural response pat-
terns in the brain. We aimed to reveal neural patterns distin-
guishing the self and other at both decision-making and out-
come phases. We used a whole-brain searchlight to obtain a
classification accuracy value per voxel. A whole-brain search-
light analysis at the onset of the choice phase, thresholding at
a standard cluster-forming threshold of P < 0.001, resulted in a
cluster of 147,090 voxels spanning a large portion of the brain
(Supplementary Fig. S5, see online supplementary material for
a color version of this figure). We therefore used a more strin-
gent cluster-forming threshold of P < 0.0001 to obtain precise
clusters that differentiated self and other choices. This analysis
revealed that the neural activity pattern in the left dlPFC, the right
TPJ, the occipital cortex comprising the left TPJ, the right mid-
dle temporal gyrus (MTG), the left superior/middle frontal gyrus
(SFG/MFG), and the cerebellum differentiated choice-making for
the self and other conditions (P < 0.05 FWE whole-brain corrected
at the cluster-level after voxel-wise thresholding at P < 0.0001;
Fig. 5A). The MVPA results showed that neural patterns in a range
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Fig 3. Computational modeling results. Simulated data using the winning model reproduced the effect of the minimum number of trials that was
required to reach the learning criterion A), and the probability of staying with the chosen partner in the previous trial B). Moreover, the learning criterion
C) and the probability of staying D) computed by simulated data were highly correlated with participants’ actual behavior. E) Similar learning rates when
learning cooperative partners for the self and for the other agent. F) The inverse temperature, characterizing the sensitivity toward value difference,
was significantly larger in the self condition than in the other condition. (data are shown as the mean ± SEM with overlaid dot plots. N.s., nonsignificant;
* P < 0.05; ** P < 0.01; *** P < 0.001).

of brain regions distinguished personal choices from vicarious
choices during learning cooperativeness.

Next, we implemented another MVPA to reveal the neural
activity patterns differentiating the processing of personal
and vicarious outcomes. This analysis identified differential
activity patterns in the right TPJ, the left striatum, the PCUN,
the left superior temporal gyrus (STG), and cortical midline

structures, including the posterior cingulate cortex (PCC) and
the dorsal ACC (P < 0.05 FWE whole-brain-corrected at the
cluster-level after voxel-wise thresholding at P < 0.001; Fig. 5B,
Supplementary Table S2).

Finally, we tested for the association between our behavioral
differences in choosing for the self and another agent (i.e.
differences in the inverse temperature between self and other
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Fig 4. Common and distinct neural responses encoding PEs for self and the other agent. A, B) The ROI analysis revealed that the pgACC tracked PEs in
both self and other conditions, but the right striatum signaled PE exclusively in the self condition. C) Scatterplot revealed that individual differences
in empathic concern modulated the neural responses to other-regarding versus self-regarding PE in the right striatum. That is, the neural activity
in the right striatum responded less to other-regarding PE relative to self-regarding PE for people lower in empathic concern. D) The pgACC (peak MNI
coordinates [x, y, z]: [0, 42, 6], cluster size k = 602, t = 6.68), bilateral striatum ([−12, 9, −3], k = 61, t = 6.30) and precentral gyrus ([−6, −33, 54], k = 641, t = 5.91)
signaled PEs in the self condition. E) The pgACC ([9, 30, 9], k = 128, t = 4.69) tracked PEs in the other condition. P < 0.05 FWE whole-brain corrected at the
cluster-level after voxel-wise thresholding at P < 0.001 for panels D and E. F) Conjunction analysis revealed that pgACC activity tracked PEs regardless
of the agent ([−3, 39, 0], k = 104, P < 0.001, t = 4.65). The contrast analysis revealed that the bilateral striatum tracked PEs to a greater degree in the self
condition than in the other condition (left: [−18, 9, −3], k = 2, P = 0.017, t = 3.75; right: [18, 6, −6], P = 0.015, k = 3, t = 3.60). P < 0.05 FWE-SVC after voxel-wise
thresholding at P < 0.001. Display threshold is P < 0.001 uncorrected. Error bars represent the standard error of the mean; n.s., nonsignificant; * P < 0.05;
** P < 0.01; *** P < 0.001.

conditions) and the neural responses to personal and vicarious
cooperative learning. We found that larger differences in inverse
temperature (but not learning rate) were associated with a higher
classification accuracy of right TPJ in differentiating personal
and vicarious outcome processing (Pearson’s r = 0.473, P = 0.011,
survives from False Discovery Rate (FDR)-correction for multiple
comparisons, Fig. 5C), suggesting a consistent classification of
learning for the self and the other agent at both behavioral and
neural levels. Therefore, those participants with the largest self
and other difference in learning were the same participants who

distinguished self and other more at the time of the outcome in
the right TPJ. It also should be cautious about our decoding results
due to the relatively small sample size.

Discussion
Knowing whether someone is cooperative plays a crucial role
in successful social life. The current study examined the
neurocomputational mechanisms for how people learn to choose
cooperative partners. We found that despite showing similar
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Fig 5. Differential neural activity patterns at the onset of choice and outcome phases. A) Using a whole-brain searchlight analysis, we found that the
distributed activity patterns of the left dlPFC (peak MNI coordinates [x, y, z]: [−33, 30, 30], cluster size k = 39, t = 4.93), occipital cortex comprising the
left TPJ ([0, −84, 6], k = 4,300, t = 8.99), right MTG extending into the right TPJ ([48, −51, 3], k = 179, t = 5.24) and SFG/MFG ([−18, 24, 54] k = 326, t = 5.36)
could significantly distinguish between self- and other-regarding choices. The display threshold is P < 0.0001 uncorrected and significant activations
are defined at P < 0.05 FWE whole-brain corrected at the cluster-level after voxel-wise thresholding at P < 0.0001. B) The distributed activity patterns
of the left striatum ([−21, 6, 6], k = 401, t = 5.14), right TPJ ([45, −30, 21], k = 543, t = 5.58) and dorsal ACC ([0, 21, 45], k = 526, t = 5.04) could significantly
distinguish between self- and other-regarding outcomes. The display threshold is P < 0.001 uncorrected and significant activations are defined at P < 0.05
FWE whole-brain corrected at the cluster-level after voxel-wise thresholding at P < 0.001. C) Bivariate association between the classification accuracy of
self- and other-regarding outcomes in the right TPJ and the difference in inverse temperature between the other and self conditions (Pearson’s r = 0.473,
P = 0.011). Participants who behaved more exploitatively for other compared with the self had more distinct multivariate patterns in the right TPJ.

learning rates when choosing cooperative partners for oneself
and vicariously for another person, people made slower and less
exploitative choices for others than for themselves. This effect
was modulated by individual levels of empathic concern, with
those higher in empathic concern making fewer speedy decisions
when choosing for others, suggesting more deliberative choice-
making when choosing for the welfare of others in more empathic
individuals. Trial-by-trial PEs during personal and vicarious
learning were tracked in the perigenual anterior cingulate cortex
(pgACC), whereas activity in the striatum specialized in coding
PEs during learning for oneself. Multivariate pattern analysis
showed that distinct neural patterns in the left dlPFC, TPJ, right
middle temporal lobe when making decisions for the self and
others and neural activity patterns in the right TPJ, dorsal ACC,
and the striatum distinguished outcomes of others and self. The
classification accuracy was associated with the difference in
choice exploitation. Taken together, we demonstrate that both
computational and neural mechanisms share commonality and
distinction for personal and vicarious partner choice.

Increasing evidence suggested that the computational mecha-
nisms of social behavior can be characterized within a RL frame-
work (Ligneul et al. 2016; Lindström et al. 2018; Wittmann et al.
2018), such as predicting other’s generosity and trustworthiness
(Fareri et al. 2015; Hackel et al. 2015) and inferring the men-
tal states of others (Rosenthal et al. 2019). Moreover, learning
on behalf of others has also been characterized by RL models,

such as vicarious learning to gain rewards and avoid punishment
(Lockwood et al. 2016; Lindström et al. 2018; Lengersdorff et al.
2020). Here, we show that individuals learn about the cooper-
ativeness of others through trial-and-error and that RL models
can capture personal and vicarious learning mechanisms. How-
ever, individuals’ choices for themselves were faster and more
exploitative, and they weighed recent experiences more, as well as
preferring to stay with the previously chosen cooperative partners
instead of exploring new potential partners. It has been shown
that people are more aversive to risk when making decisions for
themselves than for others (Beisswanger et al. 2003). Thus, it is
possible that individuals, when choosing partners for themselves,
are less explorative and stay with previously chosen partners to
avoid potential risks of new social encounters. Alternatively, when
personally interacting with others, individuals may wish to avoid
betraying the previous partner by choosing another partner and
therefore stick with the previously chosen partner.

We further revealed agent-general and agent-specific neuro-
computational mechanisms for choosing cooperative partners.
First, we found that pgACC activity positively co-varied with
cooperative PEs independent of beneficiaries. ACC has been linked
to tracking one’s own status in a social hierarchy and tracking
confidence in social and nonsocial contexts (Kumaran et al. 2016;
Bang and Fleming 2018). In the current task, pgACC activity
tracked the differences between expected and actual cooperative
(or not) behavior of the chosen partner when learning for the self
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and for another agent. A separate portion of the ACC, the dorsal
ACC, distinguished between outcomes for self and other in a mul-
tivariate pattern. This more dorsal ACC area has previously been
linked to cooperation, competition and social learning (Chang and
Sanfey 2009; Silvetti et al. 2014; Haroush and Williams 2015) but
also to learning and decision-making in general (Apps et al. 2016;
Kolling et al. 2016).

Second, we revealed agent-specific neural activity patterns
when learning to choose cooperation partners at different stages
of the learning processes. During the choice-making stage, par-
ticipants showed a neural activity pattern in the TPJ and dlPFC
that differentiated decisions made for another person and for
oneself. Univariate responses in these areas have previously been
observed when making gambling decisions for another person
(Braams et al. 2014a, 2014b), suggesting the important role of
the TPJ and dlPFC in vicarious decision-making (Wu et al. 2020).
The TPJ and dlPFC have been implicated in mentalizing others’
thoughts (Saxe 2006) and the inhibition of self-centered motives
(Baumgartner et al. 2011; Buckholtz 2015). Thus, our results sug-
gested that individuals, when choosing for others, may not simply
take their first perspective to make choices; rather, they regulate
their own thoughts and take the perspective of the other agent.

During the outcome-presentation stage, the TPJ and the stria-
tum may play different roles. We found the bilateral striatal and
TPJ engaged in different encoding processes, with bilateral stria-
tum encoding PEs during self-learning and TPJ differentiating self-
and other-related outcomes. Moreover, we found that individual’s
empathic concern was associated with striatal encoding of self
(vs. other) PEs, but not with TPJ activity pattern that differentiated
self and other outcomes (r = 0.039, P = 0.843). Previous studies have
also linked the striatal activity to computing reward PEs when
learning the association between abstract stimuli and monetary
rewards (i.e. a nonsocial context, Daw et al. 2006; Lefebvre et al.
2017). Similar to the current study, other studies also reported
striatal encoding of PEs in social context, such as learning about
others’ generosity (Hackel et al. 2015), trustworthiness (Fareri
et al. 2015), and social approval (Will et al. 2017). Taken together,
previous and our current findings suggested that the striatum
specifically signaled self-interest-related PEs in both social and
nonsocial contexts. It has also been reported that the striatum
has a high response for reward to oneself than to unknown others
(Albrecht et al. 2011; Braams et al. 2014a). The involvement of the
striatum in encoding self-related but not other-related PE further
indicates the specific role of this area may play in updating the
learning experience related to oneself.

Moreover, the activity pattern of the right TPJ during the out-
come stage distinguished between the self- and other-regarding
outcomes. The right TPJ has been implicated in the mentalizing
(Saxe 2006) and self-other distinction (Quesque and Brass 2019).
Our findings thus suggested that the self-other distinction in
processing outcomes might be an important feature for vicarious
learning and decision-making. When making vicarious decisions,
individuals may put themselves into others’ shoes and consider
whether other people would be satisfied with the outcome. Alter-
natively, the TPJ activity patterns differentiating outcomes of the
self and another agent may also be associated with processing
outcomes of prosocial decisions, as the TPJ has been shown to
play a key role in prosociality and altruistic decision-making (Mor-
ishima et al. 2012; Hutcherson et al. 2015; Liu et al. 2019). Previous
studies using monetary allocation tasks have revealed stronger
TPJ activity when individuals forgo their own rewards in favor of
others’ benefits (Hutcherson et al. 2015; Strombach et al. 2015).
Anatomical evidence also showed that the gray matter volume in

the right TPJ was positively associated with individuals’ altruistic
behaviors (Morishima et al. 2012). Consistently, we showed that
individuals showing higher classification accuracy of the right TPJ
in distinguishing self and other outcomes are more exploitative
to partners’ cooperation when making choices for the other agent
(relative to the self). Moreover, benefits for the self and for another
agent were not set in conflict in the current task, thus further sup-
port the function role of the right TPJ in other-regarding motives.
Since the variance of the classification performance is relatively
high for small sample sizes (Combrisson and Jerbi 2015), it would
be helpful to increase the sample size in the future studies to
investigate the function of right TPJ in the vicarious rewarding
process.

One potential limitation of our study is that it only involved
personal and vicarious learning in the social context—choosing
cooperation partners. To explicitly test whether the same brain
regions also support the process of nonsocial learning (i.e. mone-
tary reward learning) in self- and other-referenced frameworks,
future studies could include a nonsocial condition where the
agent (on behalf of self and other) would complete a task with the
same structure, reward probabilities as we set here, but his/her
partner is computer. In addition, it should be noted that, in the
current task, participants were asked only to choose 1 of 2 players
to cooperate with in each round without the opportunity to defect.
It remains unknown whether individuals would also adopt a basic
RL model to update their partners’ choice in more complicated
situations. For example, if participants play a 2-stage cooperation
game where they first choose partners to play a classic PD game
with and then choose to cooperate or defect, participants may
employ more sophisticated learning algorithms to track others’
mental states and tackle the cooperation problem (Zhu et al.
2012; Hula et al. 2018). In addition, social preference has been
implicated in prosocial and cooperative choices (Fehr and Schmidt
1999; Charness and Rabin 2002; Chen and Krajbich 2018), thus
the combination of the learning model and the social preference
model may help us understand cooperation-partner choice in a
more complex situation. It would be interesting for future studies
to reveal the computational and neural mechanisms underlying
different strategic cooperation on behalf of the self and other.

Overall, we reveal the computational and brain mechanisms
that underpin learning about the cooperativeness of others for
ourselves and on behalf of someone else. We show that com-
mon and distinct univariate and multivariate signals support this
learning. These findings could have important implications for
understanding how people form successful partner relationships
and ultimately help to understand disorders of social learning.
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